5,495 research outputs found

    Technology classification with latent semantic indexing

    Get PDF
    Many national and international governments establish organizations for applied science research funding. For this, several organizations have defined procedures for identifying relevant projects that based on prioritized technologies. Even for applied science research projects, which combine several technologies it is difficult to identify all corresponding technologies of all research-funding organizations. In this paper, we present an approach to support researchers and to support research-funding planners by classifying applied science research projects according to corresponding technologies of research-funding organizations. In contrast to related work, this problem is solved by considering results from literature concerning the application based technological relationships and by creating a new approach that is based on latent semantic indexing (LSI) as semantic text classification algorithm. Technologies that occur together in the process of creating an application are grouped in classes, semantic textual patterns are identified as representative for each class, and projects are assigned to one of these classes. This enables the assignment of each project to all technologies semantically grouped by use of LSI. This approach is evaluated using the example of defense and security based technological research. This is because the growing importance of this application field leads to an increasing number of research projects and to the appearance of many new technologies

    Radio Frequency Interference Mitigation

    Full text link
    Radio astronomy observational facilities are under constant upgradation and development to achieve better capabilities including increasing the time and frequency resolutions of the recorded data, and increasing the receiving and recording bandwidth. As only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, this results in the radio observational instrumentation being inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of astronomical data and even lead to data loss. The impact of RFIs on scientific outcome is becoming progressively difficult to manage. In this article, we motivate the requirement for RFI mitigation, and review the RFI characteristics, mitigation techniques and strategies. Mitigation strategies adopted at some representative observatories, telescopes and arrays are also introduced. We also discuss and present advantages and shortcomings of the four classes of RFI mitigation strategies, applicable at the connected causal stages: preventive, pre-detection, pre-correlation and post-correlation. The proper identification and flagging of RFI is key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation techniques. This can be achieved through a strategy involving a combination of the discussed techniques in stages. Recent advances in high speed digital signal processing and high performance computing allow for performing RFI excision of large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.Comment: 26 pages, 10 figures, Chinese version accepted for publication in Acta Astronomica Sinica; English version to appear in Chinese Astronomy and Astrophysic

    Paving the path towards automatic hexahedral mesh generation

    Get PDF
    Esta tesis versa sobre el desarrollo de las tecnologías para la generación de mallas de hexaedros. El proceso de generar una malla de hexaedros no es automático y su generación requiere varias horas te trabajo de un ingeniero especializado. Por lo tanto, es importante desarrollar herramientas que faciliten dicho proceso de generación. Con este fin, se presenta y desarrolla un método de proyección de mallas, una técnica de sweeping o barrido, un algoritmo para la obtención de mallas por bloques, y un entorno de generación de mallas. Las implementaciones más competitivas del método de sweeping utilizan técnicas de proyección de mallas basadas en métodos afines. Los métodos afines más habituales presentan varios problemas relacionados con la obtención de sistemas de ecuaciones normales de rango deficiente. Para solucionar dichos problemas se presenta y analiza un nuevo método afín que depende de dos parámetros vectoriales. Además, se detalla un procedimiento automático para la selección de dichos vectores. El método de proyección resultante preserva la forma de las mallas proyectadas. Esta proyección es incorporada también en una nueva herramienta de sweeping. Dicha herramienta genera capas de nodos internos que respetan la curvatura de las superficies inicial y final. La herramienta de sweeping es capaz de mallar geometrías de extrusión definidas por trayectorias curvas, secciones no constantes a lo largo del eje de sweeping, y superficies inicial y final con diferente forma y curvatura.En las últimas décadas se han propuesto varios ataques para la generación automática de mallas de hexahedros. Sin embargo, todavía no existe un algoritmo rápido y robusto que genere automáticamente mallas de hexaedros de alta calidad. Se propone un nuevo ataque para la generación de mallas por bloques mediante la representación de la geometría y la topología del dual de una malla de hexaedros. En dicho ataque, primero se genera una malla grosera de tetraedros. Después, varió polígonos planos se añaden al interior de los elementos de la malla grosera inicial. Dichos polígonos se denotan como contribuciones duales locales y representan una versión discreta del dual de una malla de hexaedros. En el último paso, la malla por bloques se obtiene como el dual de la representación del dual generada. El algoritmo de generación de mallas por bloques es aplicado a geometrías que presentan diferentes características geométricas como son superficies planas, superficies curvas, configuraciones delgadas, agujeros, y vértices con valencia mayor que tres.Las mallas se generan habitualmente con la ayuda de entornos interactivos que integran una interfaz CAD y varios algoritmos de generación de mallas. Se presenta un nuevo entorno de generación de mallas especializado en la generación de cuadriláteros y hexaedros. Este entorno proporciona la tecnología necesaria para implementar les técnicas de generación de mallas de hexaedros presentadas en esta tesis.This thesis deals with the development of hexahedral mesh generation technology. The process of generating hexahedral meshes is not fully automatic and it is a time consuming task. Therefore, it is important to develop tools that facilitate the generation of hexahedral meshes. To this end, a mesh projection method, a sweeping technique, a block-meshing algorithm, and an interactive mesh generation environment are presented and developed. Competitive implementations of the sweeping method use mesh projection techniques based on affine methods. Standard affine methods have several drawbacks related to the statement of rank deficient sets of normal equations. To overcome these drawbacks a new affine method that depends on two vector parameters is presented and analyzed. Moreover, an automatic procedure that selects these two vector parameters is detailed. The resulting projection procedure preserves the shape of projected meshes. Then, this procedure is incorporated in a new sweeping tool. This tool generates inner layers of nodes that preserve the curvature of the cap surfaces. The sweeping tool is able to mesh extrusion geometries defined by non-linear sweeping trajectories, non-constant cross sections along the sweep axis, non-parallel cap surfaces, and cap surfaces with different shape and curvature. In the last decades, several general-purpose approaches to generate automatically hexahedral meshes have been proposed. However, a fast and robust algorithm that automatically generates high-quality hexahedral meshes is not available. A novel approach for block meshing by representing the geometry and the topology of a hexahedral mesh is presented. The block-meshing algorithm first generates an initial coarse mesh of tetrahedral elements. Second, several planar polygons are added inside the elements of the initial coarse mesh. These polygons are referred as local dual contributions and represent a discrete version of the dual of a hexahedral mesh. Finally, the dual representation is dualized to obtain the final block mesh. The block-meshing algorithm is applied to mesh geometries that present different geometrical characteristics such as planar surfaces, curved surfaces, thin configurations, holes, and vertices with valence greater than three.Meshes are usually generated with the help of interactive environments that integrate a CAD interface and several meshing algorithms. An overview of a new mesh generation environment focused in quadrilateral and hexahedral mesh generation is presented. This environment provides the technology required to implement the hexahedral meshing techniques presented in this thesis.Postprint (published version

    GRID AND CLOUD COMPUTING FOR E-SCIENCE APPLICATIONS

    Get PDF
    eScience fields which include areas such as spatial data, electromagnetic,bioinformatics, energy, social sciences, simulation, physical science have on the course of recent years a significant development regarding the complexity of algorithms and applications for data analysis. Information data has also evolved with an explosion in term of data volume and datasets for the scientific community. This has led researchers to identify new necessity regarding tools analysis, applications, by a profound change in computing infrastructures utilization. The field of eScience is constantly evolving through the creation of ever more growing scientific community who have a real needs in availability in computational resources ever more powerful calculations. Another important issue is the ability to be able to share results, this is why cloud technology through virtualization can be an important help for the scientist community for giving a flexible and scalable IT infrastructure depending on necessities. Indeed, cloud computing allows for the provision of computing resources, storage in an easy configurable way and adaptable in functions of real needs. Researchers often do not have all the computing capacities to meet their needs, so cloud technology and cloud models as Private, Public and Hybrid is an enable technology for having a guarantee of service availability, scalability and flexibility. The transition from traditional infrastructure to new virtualized with distributed models allows researchers to have access to an environment extremely flexible allowing an optimization of the use of hardware for having more available resources. However, the computational needs on e-Science have a direct effect regarding the way that applications are developed. The approach of writing algorithm and applications is still too tied to a model centered on a workstation for example. The vast majority of researchers conducts the writing process of their applications on their laptop or workstation in a limited context of computing power, storage and in a non-distributed wa

    GRID AND CLOUD COMPUTING FOR E-SCIENCE APPLICATIONS

    Get PDF
    eScience fields which include areas such as spatial data, electromagnetic,bioinformatics, energy, social sciences, simulation, physical science have on the course of recent years a significant development regarding the complexity of algorithms and applications for data analysis. Information data has also evolved with an explosion in term of data volume and datasets for the scientific community. This has led researchers to identify new necessity regarding tools analysis, applications, by a profound change in computing infrastructures utilization. The field of eScience is constantly evolving through the creation of ever more growing scientific community who have a real needs in availability in computational resources ever more powerful calculations. Another important issue is the ability to be able to share results, this is why cloud technology through virtualization can be an important help for the scientist community for giving a flexible and scalable IT infrastructure depending on necessities. Indeed, cloud computing allows for the provision of computing resources, storage in an easy configurable way and adaptable in functions of real needs. Researchers often do not have all the computing capacities to meet their needs, so cloud technology and cloud models as Private, Public and Hybrid is an enable technology for having a guarantee of service availability, scalability and flexibility. The transition from traditional infrastructure to new virtualized with distributed models allows researchers to have access to an environment extremely flexible allowing an optimization of the use of hardware for having more available resources. However, the computational needs on e-Science have a direct effect regarding the way that applications are developed. The approach of writing algorithm and applications is still too tied to a model centered on a workstation for example. The vast majority of researchers conducts the writing process of their applications on their laptop or workstation in a limited context of computing power, storage and in a non-distributed way

    Indexing and retrieval in digital libraries : developing taxonomies for a repository of decision technologies

    Get PDF
    DecisionNet is an online Internet-based repository of decision technologies. It links remote users with these technologies and provides a directory service to enable search and selection of suitable technologies. The ability to retrieve relevant objects through search mechanisms is basic to any repository's success and usability and depends on effective classification of the decision technologies. This thesis develops classification methods to enable indexing of the DecisionNet repository. Existing taxonomies for software and other online repositories are examined. Criteria and principles for a good taxonomy are established and systematically applied to develop DecisionNet taxonomies. A database design is developed to store the taxonomies and to classify the technologies in the repository. User interface issues for navigation of a hierarchical classification system are discussed. A user interface for remote World Wide Web users is developed. This user interface is designed for browsing the taxonomy structure and creating search parameters online. Recommendations for the implementation of a repository search mechanism are given.http://archive.org/details/indexingndretrie1094532199NAU.S. Navy (U.S.N.) authorApproved for public release; distribution is unlimited

    A methodology for structured ontology construction applied to intelligent transportation systems

    Get PDF
    The number of computers installed in urban and transport networks has grown tremendously in recent years, also the local processing capabilities and digital networking currently available. However, the heterogeneity of existing equipment in the field of ITS (Intelligent Transportation Systems) and the large volume of information they handle, greatly hinder the interoperability of the equipment and the design of cooperative applications between devices currently installed in urban networks. While the dynamic discovery of information, composition and invocation of services through intelligent agents are a potential solution to these problems, all these technologies require intelligent management of information flows. In particular, it is necessary to wean these information flows of the technologies used, enabling universal interoperability between computers, regardless of the context in which they are located. The main objective of this paper is to propose a systematic methodology to create ontologies, using methods such as a semantic clustering algorithms for retrieval and representation of information. Using the proposed methodology, an ontology will be developed in the ITS domain. This ontology will serve as the basis of semantic information to a SS (Semantic Service) that allows the connection of new equipment to an urban network. The SS uses the CORBA standard as distributed communication architecture

    Thirty years of artificial intelligence and law : the third decade

    Get PDF

    Unveiling the dynamics between Frugal Innovation and Product Performance

    Get PDF
    A Bibliometric map of Intellectual Communities in Frugal Innovation Literature. The Performance of Alternative Innovation approach: an Agent-Based Model. Modelling the Product Complexity and Frugal Innovation from a Product Architecture approach: a pseudo NK model
    • …
    corecore