39 research outputs found

    Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

    Get PDF
    This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1011198) , (Institute for Information & communications Technology Planning & Evaluation) (IITP) grant funded by the Korea government (MSIT) under the ICT Creative Consilience Program (IITP-2021-2020-0-01821) , and AI Platform to Fully Adapt and Reflect Privacy-Policy Changes (No. 2022-0-00688).Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated applications, but the outcomes of many AI models are challenging to comprehend and trust due to their black-box nature. Usually, it is essential to understand the reasoning behind an AI mode ľs decision-making. Thus, the need for eXplainable AI (XAI) methods for improving trust in AI models has arisen. XAI has become a popular research subject within the AI field in recent years. Existing survey papers have tackled the concepts of XAI, its general terms, and post-hoc explainability methods but there have not been any reviews that have looked at the assessment methods, available tools, XAI datasets, and other related aspects. Therefore, in this comprehensive study, we provide readers with an overview of the current research and trends in this rapidly emerging area with a case study example. The study starts by explaining the background of XAI, common definitions, and summarizing recently proposed techniques in XAI for supervised machine learning. The review divides XAI techniques into four axes using a hierarchical categorization system: (i) data explainability, (ii) model explainability, (iii) post-hoc explainability, and (iv) assessment of explanations. We also introduce available evaluation metrics as well as open-source packages and datasets with future research directions. Then, the significance of explainability in terms of legal demands, user viewpoints, and application orientation is outlined, termed as XAI concerns. This paper advocates for tailoring explanation content to specific user types. An examination of XAI techniques and evaluation was conducted by looking at 410 critical articles, published between January 2016 and October 2022, in reputed journals and using a wide range of research databases as a source of information. The article is aimed at XAI researchers who are interested in making their AI models more trustworthy, as well as towards researchers from other disciplines who are looking for effective XAI methods to complete tasks with confidence while communicating meaning from data.National Research Foundation of Korea Ministry of Science, ICT & Future Planning, Republic of Korea Ministry of Science & ICT (MSIT), Republic of Korea 2021R1A2C1011198Institute for Information amp; communications Technology Planning amp; Evaluation) (IITP) - Korea government (MSIT) under the ICT Creative Consilience Program IITP-2021-2020-0-01821AI Platform to Fully Adapt and Reflect Privacy-Policy Changes2022-0-0068

    Ohio State University Bulletin

    Get PDF
    Classes available for students to enroll in during the 1989-1990 academic year for The Ohio State University

    Scaling-up reinforcement learning using parallelization and symbolic planning

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    University of Windsor Graduate Calendar 2004-2006

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1020/thumbnail.jp

    Planning with neural networks and reinforcement learning

    Get PDF
    This thesis presents the design, implementation and investigation of some predictive-planning controllers built with neural-networks and inspired by Dyna-PI architectures (Sutton, 1990). Dyna-PI architectures are planning systems based on actor-critic reinforcement learning methods and a model of the environment. The controllers are tested with a simulated robot that solves a stochastic path-finding landmark navigation task. A critical review of ideas and models proposed by the literature on problem solving, planning, reinforcement learning, and neural networks precedes the presentation of the controllers. The review isolates ideas relevant to the design of planners based on neural networks. A "neural forward planner" is implemented that, unlike the Dyna-PI architectures, is taskable in a strong sense. This planner is capable of building a "partial policy" focussed on around efficient start-goal paths, and is capable of deciding to re-plan if "unexpected" states are encountered. Planning iteratively generates "chains of predictions" starting from the current state and using the model of the environment. This model is made up by some neural networks trained to predict the next input when an action is executed. A "neural bidirectional planner" that generates trajectories backward from the goal and forward from the current state is also implemented. This planner exploits the knowledge (image) on the goal, further focuses planning around efficient start-goal paths, and produces a quicker updating of evaluations. In several experiments the generalisation capacity of neural networks proves important for learning but it also causes problems of interference. To deal with these problems a modular neural architecture is implemented, that uses a mixture of experts network for the critic, and a simple hierarchical modular network for the actor. The research also implements a simple form of neural abstract planning named "coarse planning", and investigates its strengths in terms of exploration and evaluations\u27 updating. Some experiments with coarse planning and with other controllers suggest that discounted reinforcement learning may have problems dealing with long-lasting tasks

    General Catalog 2000-2002

    Get PDF
    Contains course descriptions, University college calendar, and college administrationhttps://digitalcommons.usu.edu/universitycatalogs/1122/thumbnail.jp

    A picture is worth a thousand words : content-based image retrieval techniques

    Get PDF
    In my dissertation I investigate techniques for improving the state of the art in content-based image retrieval. To place my work into context, I highlight the current trends and challenges in my field by analyzing over 200 recent articles. Next, I propose a novel paradigm called __artificial imagination__, which gives the retrieval system the power to imagine and think along with the user in terms of what she is looking for. I then introduce a new user interface for visualizing and exploring image collections, empowering the user to navigate large collections based on her own needs and preferences, while simultaneously providing her with an accurate sense of what the database has to offer. In the later chapters I present work dealing with millions of images and focus in particular on high-performance techniques that minimize memory and computational use for both near-duplicate image detection and web search. Finally, I show early work on a scene completion-based image retrieval engine, which synthesizes realistic imagery that matches what the user has in mind.LEI Universiteit LeidenNWOImagin
    corecore