727 research outputs found

    Solution Self-Assembly of Dendritic-Linear Block Copolymers into Inverse Bicontinuous Cubic Phases

    Get PDF
    Department of ChemistryInverse bicontinuous cubic (IBC) phases of lipids and their colloidal forms, referred to as cubosomes, possess internal networks of water channels. These crystalline mesophases have attracted considerable attention owing to their unique nanospace for the encapsulation of guest molecules. Block copolymers (BCPs) are the versatile building block that can be used to generate well-defined three-dimensional structures. Direct solution self-assembly of amphiphilic BCPs into IBC phases is a promising new strategy for creating high crystalline porous polymer materials. In this dissertation, I describe the self-assembly of dendritic-linear BCPs into IBC phases. The dendritic isomer of second-generation benzyl ether dendrons with six water-soluble peripheral poly(ethylene glycol) (PEG) chains was synthesized. These isomers were converted into macroinitiators for the atom-transfer radical polymerization (ATRP) of styrene. The asymmetric block ratio and bulky dendritic blocks drove the BCPs to form colloidal IBC phases. The internal structures of the resulting polymer cubosomes show crystalline lattices over the long range including primitive cubic, double diamond, and gyroid symmetries depending on the architecture of the dendritic hydrophilic block. Functional groups on the surface of the bilayer membranes were introduced via the coassembly of dendritic-linear block copolymers and linear block copolymers that possess an amino- or thiol-functionalized PEG block. The surface functionalized polymer cubosomes showed successful internalizing of large protein complex such as horseradish peroxidase (HRP). Furthermore, I devised a new method of solution self-assembly by diffusion of water to the block copolymer solution, which results in the unperturbed formation of mesoporous monoliths with large pore networks weaved in crystalline lattices. The internal networks of large pores within the mesoporous monoliths used as a platform to accommodate guest molecules such as streptavidin and mCherry. The monolith is also used as a scaffold for the synthesis of three-dimensional (3D) skeletal structures of crystalline titania and hierarchically mesoporous silica. The phase of the self-assembled structures of the branched-linear BCPs was controlled ranging from bilayer structures of positive curvature to inverse mesophases by adjusting the solvent used for self-assembly. Dimethylformamide (DMF) is a pseudo-theta solvent for polystyrene, in which PS adopts a reduced chain dimension compared to the value of the same PS dissolved in dioxane. The morphological transition of self-assembled structures from vesicles to IBC structures and inverse hexagonal phases were fully observed as a result of an increase in the portion of DMF in the solvent mixture. A similar transition also occurred in the formation of mesoporous monoliths. The internal structure of polymer cubosomes exhibits double networks of water channels. However, the interfacial topology of polymer cubosomes renders one of the two non-intersecting pore networks to be inaccessible to diffusion. The connectivity of the open surface pores was studied by 3D tomogram of the polymer cubosomes. This topological feature forces the external guests to enter only into the open cubic channel network within the polymer cubosomes. By backfilling the polymer cubosomes with the silica and titania precursor, the single network cubic structure was replicated from the IBC structures.ope

    Self-Assembling Peptide Nanomaterials: Molecular Dynamics Studies, Computational Designs And Crystal Structure Characterizations

    Get PDF
    Peptides present complicated three-dimensional folds encoded in primary amino acid sequences of no more than 50 residues, providing cost-effective routes to the development of self-assembling nanomaterials.� The complexity and subtlety of the molecular interactions in such systems make it interesting to study and to understand the fundamental principles that determine the self-assembly of nanostructures and morphologies in solution. Such principles can then be applied to design novel self-assembling nanomaterials of precisely defined local structures and to controllably engineer new advanced functions into the materials. We first report the rational engineering of complementary hydrophobic interactions to control β-fibril type peptide self-assemblies that form hydrogel networks. Complementary to the experimental observations of the two distinct branching morphologies present in the two β-fibril systems that share a similar sequence pattern, we investigated on network branching, hydrogel properties by molecular dynamics simulations to provide a molecular picture of the assemblies. Next, we present the theory-guided computational design of novel peptides that adopt predetermined local nanostructures and symmetries upon solution assembly. Using such an approach, we discovered a non-natural, single peptide tetra-helical motif that can be used as a common building block for distinct predefined material nanostructures. The crystal structure of one designed peptide assembly demonstrates the atomistic match of the motif structure to the prediction, as well as provides fundamental feedback to the methods used to design and evaluate the computationally designed peptide candidates. This study could potentially improve the success rate of future designs of peptide-based self-assembling nanomaterials

    Hierarchical Assemblies of Soft Matters From Polymers and Liquid Crystals on Structured Surfaces

    Get PDF
    Hierarchical, multifunctional materials hold important keys to numerous advanced technologies, including electronics, optics, and medicine. This thesis encompasses generation of hierarchical structures with novel morphologies and functions through self-assembly directed by lithographically fabricated templates. Here, two soft materials, amphiphilic random copolymers of photopolymerized acryloyl chloride (ranPAC) and smectic-A liquid crystal (SmA-LC) molecule, 4\u27(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecaflu-orododecyloxy)-biphenyl-4-carboxylic acid ethyl ester, are synthesized as model systems to investigate the governing principles at the topographic surface/interface. The ranPAC can self-organize into nanomicelles with high regularity and stability, typically not possible in random copolymer systems. The morphology can be controlled by the photopolymerization conditions and solvent; the crosslinked shell makes the micelles robust against drying and storage. Using SU-8 micropillar arrays with spatially controlled surface chemistry as templates, we construct hierarchical microporous structures with tunable pore size and symmetry (e.g. square array), and uncover a new evaporative assembly method. By functionalizing the ranPAC nanovesicles with cationic poly(ethyleneimines), we encapsulate the anticancer drug, doxorubicin hydrochloride, and mRNA at a high payload, which are delivered to HEK 293T cells in vitro at a low cytotoxicity level. SmA-LC are characterized by arrangement of molecules into thin layers with the long molecular axis parallel to the layer normal, forming a close-packed hexagonal array of topological defects known as focal conic domains (FCDs) in a thin film. Using a series of SU-8 micropillar arrays with different size, shape, height, and symmetry as topological templates, we investigate the epitaxial and hierarchical assemblies of FCDs; whether the system favors confinement or pillar edge-pinning depends on balance of the elastic energy of LCs and the surface energy imposed by the template. The conservation of toric FCD (TFCD) textures over large LC thickness manifests a remarkably unique outcome of the epitaxial growth of TFCDs. On shorter pillars, however, the system favors the pinning of FCD centers near pillar edges while avoiding the opposing effect of confinement, leading to the break of the underlying symmetry of the pillar lattice, exhibiting tunable eccentricity, and a nontrivial yet organized array of defects balancing the elastic energy of LCs and the surface energy imposed by the template

    Stability Enhanced Perovskite Thin Films for Solar Energy Applications

    Get PDF

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field

    Functional colloidal surface assemblies: Classical optics meets template-assisted self-assembly

    Get PDF
    Abstract: When noble metals particles are synthesized with progressively smaller dimensions, strikingly novel optical properties arise. For nanoscale particles, collective disturbances of the electron density known as localized surface plasmons resonances can arise, and these resonances are utilized in a variety of applications ranging from surface-enhanced molecular spectroscopy and sensing to photothermal cancer therapy to plasmon-driven photochemistry. Central to all of these studies is the plasmon’s remarkable ability to process light, capturing and converting it into intense near fields, heat, and even energetic carriers at the nanoscale. In the past decade, we have witnessed major advances in plasmonics which is directly linked with the much broader field of (colloidal) nanotechnology. These breakthroughs span from plasmon lasing and waveguides, plasmonic photochemistry and solar cells to active plasmonics, plasmonics nanocomposites and semiconductor plasmons. All the above-mentioned phenomena rely on precise spatial placement and distinct control over the dimensions and orientation of the individual plasmonic building blocks within complex one-, two- or three-dimensional complex arrangements. For the nanofabrication of metal nanostructures at surfaces, most often lithographic approaches, e.g. e-beam lithography or ion-beam milling are generally applied, due to their versatility and precision. However, these techniques come along with several drawbacks such as limited scalability, limited resolution, limited compatibility with silicon manufacturing techniques, damping effects due to the polycrystalline nature of the metal nanostructures and low sample throughput. Thus, there is a great demand for alternative approaches for the fabrication of metal nanostructures to overcome the above-mentioned limitations. But why colloids? True three-dimensionality, lower damping, high quality modes due to mono-dispersity, and the absence of grain boundaries make the colloidal assembly an especially competitive method for high quality large-scale fabrication. On top of that, colloids provide a versatile platform in terms of size, shape, composition and surface modification and dispersion media. 540The combination of directed self-assembly and laser interference lithography is a versatile admixture of bottom-up and top-down approaches that represents a compelling alternative to commonly used nanofabrication methods. The objective of this thesis is to focus on large area fabrication of emergent spectroscopic properties with high structural and optical quality via colloidal self-assembly. We focus on synergy between optical and plasmonic effects such as: (i) coupling between localized surface plasmon resonance and Bragg diffraction leading to surface lattice resonance; (ii) strong light matter interaction between guided mode resonance and collective plasmonic chain modes leading to hybrid guided plasmon modes, which can further be used to boost the hot-electron efficiency in a semiconducting material; (iii) similarly, bilayer nanoparticle chains leading to chiro-optical effects. Following this scope, this thesis introduces a real-time tuning of such exclusive plasmonic-photonic (hybrid) modes via flexible template fabrication. Mechanical stimuli such as tensile strain facilitate the dynamic tuning of surface lattice resonance and chiro-optical effects respectively. This expands the scope to curb the rigidity in optical systems and ease the integration of such systems with flexible electronics or circuits.:Contents Abstract Kurzfassung Abbreviations 1. Introduction and scope of the thesis 1.1. Introduction 1.1.1. Classical optics concepts 1.1.2. Top down fabrication methods and their challenges 1.1.3. Template-assisted self-assembly 1.1.4. Functional colloidal surface assemblies 1.2. Scope of the thesis 2. Results and Discussion 2.1. Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly 2.1.1. Fabrication of flexible 2D plasmonic lattice 2.1.2. Investigation of the influence of particle size distribution on SLR quality 2.1.3. Band diagram analysis of 2D plasmonic lattice 2.1.4. Strain induced tuning of SLR 2.1.5. SEM and force transfer analysis in 2D plasmonic lattice under various strain 2.2. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating 2.2.1. Fabrication of hybrid opto-plasmonic structure via template assisted self-assembly 2.2.2. Comparison of optical band diagram of three (plasmonic, photonic and hybrid) different structures in TE and TM modes 2.2.3. Simulative comparison of optical properties of hybrid opto-plasmonic NP chains with a grating of metallic gold bars 2.2.4. Effect of cover index variation with water as a cover medium 2.3. Hot electron generation via guided hybrid modes 2.3.1. Fabrication of the hybrid GMR structure via LIL and lift-off process 2.3.2. Spectroscopic and simulative analysis of hybrid opto-plasmonic structures of different periodicities 2.3.3. Comparative study of photocurrent generation in different plasmonic structures 2.3.4. Polarization dependent response at higher wavelength 2.3.5. Directed self-assembly of gold nanoparticles within grating channels of a dielectric GMR structure supported by titanium dioxide film 2.4. Active Chiral Plasmonics Based on Geometrical Reconfiguration 2.4.1. Chiral 3D assemblies by macroscopic stacking of achiral chain substrates 3. Conclusion 4. Zusammenfassung 5. Bibliography 6. Appendix 6.1. laser interference lithography 6.2. Soft molding 6.3. Determine fill factor of plasmonic lattice 6.4. 2D plasmonic lattice of Au_BSA under strain 6.5. Characterizing order inside a 2D lattice 6.6. Template-assisted colloidal self-assembly 6.7. Out of plane lattice resonance in 1D and 2D lattices 6.8. E-Field distribution at out of plane SLR mode for 1D lattices of various periodicity with AOI 20° 6.9. Refractive index of PDMS and UV-PDMS 6.10. Refractive index measurement for sensing 6.11. Optical constants of TiO2, ma-N 405 photoresist and glass substrate measured from spectroscopic ellipsometry Acknowledgement/ Danksagung Erklärung & Versicherung List of Publication

    Strukture polja v aktivnih in pasivnih tekočih kristalih

    Full text link
    Field structures are developed in passive and active nematic fluids. These are field profiles that are determined by confinement, particles, flow and external fields. Our central methodological approach is numerical modeling based on free energy minimization with finite difference method and flow modeling with hybrid lattice Boltzmann method. We develop structures by combining concepts of topological defects, external confinement and colloidal particles. Ordering properties of horseshoe nematic colloidal particles with planar degenerate anchoring are investigated with numerical modeling, where we optimize their geometrical parameters such that the particle exhibit attractive interactions and can self assemble into 2D and even 3D colloidal crystals. The metamaterial response of horseshoe colloids that perform as split ring resonators is studied. Optical cloaking is achieved by generating polymer microstructures embedded directly within a electric field switchable liquid crystal device. Using numerical modelling we explore the director field structures forming in the vicinity of composite colloidal particles with specially designed conic anchoring, which are assumed to induce high multipoles. Simple rule that allow predictions of multipolar moment from defect configuration is extracted. Starting with a gyroid structure, which is a photonic crystal by itself, we introduce an achiral and chiral nematic into one labyrinth of channels with homeotropic anchoring. Complexly shaped channels induce both ordered and disordered structures of defects. Simulating the passive nematic flow in porous microchannels we study the formation of individual umbilic defects of various strength and umbilic defect lattices that arise as the consequence of complex velocity field containing both multiple peaks and saddles. We investigate the 3D active turbulence in droplets of active nematic with homeotropic and non slip boundary condition. The transition from the point defect to the active turbulence is studied by analysing both the topological defects and corresponding events as well as flow. More generally, this work is aimed at the development of novel functional soft matter, which can exhibit exciting and unusual material characteristics, including light guiding, topological defect states, photonic bandgaps, metamaterials and optical cloaking.V doktorskem delu smo razvili strukture polja v pasivnih in aktivnih nematskih tekočinah. Ti profili v polju so določeni z ograditvijo, delci, tokom in zunanjimi polji. Osrednji raziskovalni pristop je numerično modeliranje, ki temelji na minimizaciji proste energije z metodo končnih diferenc, in modeliranje toka s hibridno mrežno Boltzmannovo metodo. Ustvarjene strukture so rezultat kombinacije topoloških defektov, zunanje ograditve in koloidnih delcev. Preučevali smo urejanje podkvastih koloidnih delcev s planarnim sidranjem. Geometrijske parametre koloidnega delca smo optimizirali tako, da so delci medsebojno interagirali privlačno in so se lahko sestavili v 2D in tudi 3D koloidne kristale. Študirali smo tudi metamaterialni odziv tovrstnih podkvastih koloidov, ki se obnašajo kot resonatorji. Pokazali smo optično zakrivanje z ustvarjanjem polimernih struktur direktno v tekočekristalni celici, nastavljivi z električnim poljem. S pomočjo numeričnega modeliranja smo raziskali strukture v nematskem polju, ki se formirajo v okolici kompozitnih koloidnih delcev s posebnim koničnim sidranjem in ustvarjajo višje multipolne momente. Predstavimo tudi preprosto pravilo, s katerim lahko napovemo multipolni moment samo z opazovanjem defektnih struktur. V enega od obeh prepletov kanalov, v giroidni strukturi, uvedemo kiralni in nekiralni nematski tekoči kristal. Kompleksna oblika kanalov povzroči nastanek tako urejenih, kot tudi neurejenih defektnih struktur. Simuliramo pasivni nematski tok v poroznih mikrokanalih in študiramo nastanek umbiličnih defektov različnih moči ter regularnih mrež umbiličnih defektov, ki nastanejo zaradi sedelnih in ekstremalnih točk v toku. Preučimo 3D aktivno turbulenco v kapljicah aktivnega nematika s homeotropnimi robnimi pogoji. Študiramo prehod iz točkastega defekta v topološko turbulenco z analizo topoloških defektov in topoloških dogodkov, kot tudi z analizo samega toka. To delo je torej namenjeno razvoju nove funkcionalne mehke snovi, ki ima zanimive lastnosti, kot so na primer vodenje svetlobe, topološka defektna stanja, fotonske reže, metamateriali in optično zakrivanje

    Strategy for construction of polymerized volume data sets

    Get PDF
    This thesis develops a strategy for polymerized volume data set construction. Given a volume data set defined over a regular three-dimensional grid, a polymerized volume data set (PVDS) can be defined as follows: edges between adjacent vertices of the grid are labeled 1 (active) or 0 (inactive) to indicate the likelihood that an edge is contained in (or spans the boundary of) a common underlying object, adding information not in the original volume data set. This edge labeling Âpolymerizes adjacent voxels (those sharing a common active edge) into connected components, facilitating segmentation of embedded objects in the volume data set. Polymerization of the volume data set also aids real-time data compression, geometric modeling of the embedded objects, and their visualization. To construct a polymerized volume data set, an adjacency class within the grid system is selected. Edges belonging to this adjacency class are labeled as interior, exterior, or boundary edges using discriminant functions whose functional forms are derived for three local adjacency classes. The discriminant function parameter values are determined by supervised learning. Training sets are derived from an initial segmentation on a homogeneous sample of the volume data set, using an existing segmentation method. The strategy of constructing polymerized volume data sets is initially tested on synthetic data sets which resemble neuronal volume data obtained by three-dimensional microscopy. The strategy is then illustrated on volume data sets of mouse brain microstructure at a neuronal level of detail. Visualization and validation of the resulting PVDS is shown in both cases. Finally the procedures of polymerized volume data set construction are generalized to apply to any Bravais lattice over the regular 3D orthogonal grid. Further development of this latter topic is left to future work

    Computational characterization and prediction of metal-organic framework properties

    Full text link
    In this introductory review, we give an overview of the computational chemistry methods commonly used in the field of metal-organic frameworks (MOFs), to describe or predict the structures themselves and characterize their various properties, either at the quantum chemical level or through classical molecular simulation. We discuss the methods for the prediction of crystal structures, geometrical properties and large-scale screening of hypothetical MOFs, as well as their thermal and mechanical properties. A separate section deals with the simulation of adsorption of fluids and fluid mixtures in MOFs
    corecore