18 research outputs found

    Integrated human exposure to air pollution

    Get PDF
    The book “Integrated human exposure to air pollution” aimed to increase knowledge about human exposure in different micro-environments, or when citizens are performing specific tasks, to demonstrate methodologies for the understanding of pollution sources and their impact on indoor and ambient air quality, and, ultimately, to identify the most effective mitigation measures to decrease human exposure and protect public health. Taking advantage of the latest available tools, such as internet of things (IoT), low-cost sensors and a wide access to online platforms and apps by the citizens, new methodologies and approaches can be implemented to understand which factors can influence human exposure to air pollution. This knowledge, when made available to the citizens, along with the awareness of the impact of air pollution on human life and earth systems, can empower them to act, individually or collectively, to promote behavioral changes aiming to reduce pollutants’ emissions. Overall, this book gathers fourteen innovative studies that provide new insights regarding these important topics within the scope of human exposure to air pollution. A total of five main areas were discussed and explored within this book and, hopefully, can contribute to the advance of knowledge in this field

    Electromagnetic Wave Propagation for Industry and Biomedical Applications

    Get PDF
    This book highlights original research and high-quality technical briefs on electromagnetic wave propagation, radiation, and scattering, and their applications in industry and biomedical engineering. It also presents recent research achievements in the theoretical, computational, and experimental aspects of electromagnetic wave propagation, radiation, and scattering. The book is divided into three sections. Section 1 consists of chapters with general mathematical methods and approaches to the forward and inverse problems of wave propagation. Section 2 presents the problems of wave propagation in superconducting materials and porous media. Finally, Section 3 discusses various industry and biomedical applications of electromagnetic wave propagation, radiation, and scattering

    Desenvolvimento de uma unidade de rádio para uma infraestrutura C-RAN 5G

    Get PDF
    The arrival of 5G brings telecommunications engineers a set of challenges to solve. This new generation of mobile communications brings faster speeds, higher bandwidth, lower latency and superior quality of service when compared with 4G/LTE. This dissertation studies the update of the ORCIP testbed using analogue radio-over-fibre (RoF) transmission. For that, a study and characterisation of an optical link using a TOSA and a ROSA are made to replace the current structure based on low-cost SFP transceivers. A remote radio unit is developed containing a radio frequency frontend and the developed analogue optical link. This radio frequency frontend is designed for the N78 band of 5G FR1 in Portugal. The performance of the developed frontend is analysed in conjunction with the optical link using an actual 5G signal.A chegada do 5G traz um conjunto de desafios para os engenheiros de telecomunicações resolverem. Esta nova geração de comunicações móveis traz mais velocidade, maior largura de banda, menor latência e uma qualidade de serviço superior, quando comparado com o 4G/LTE. Nesta dissertação será abordada a atualização da rede de acesso da infraestrutura ORCIP através do uso de transmissão analógica de rádio-sobre-fibra (RoF). Para isso será feito um estudo e uma caracterização de uma ligação ótica à base de um TOSA e um ROSA para substituir a estrutura atualmente implementada baseada em transceivers SFPs de baixo custo. Será também projetada uma unidade de rádio remota que contém um frontend de rádio frequência aliado à ligação ótica analógica previamente desenvolvida. Este frontend de rádio frequência é projetado para operar na banda N78 de 5G FR1, em Portugal. A performance do frontend desenvolvido será analisada em conjunto com a ligação ótica usando um sinal de 5G real.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Development of electronics for the VELO upgrade detector

    Get PDF
    Esta tesis cubre el diseño electrónico del detector de vértices (VELO) del experimento LHCb del CERN. El VELO está situado rodeando el punto de colisión de los dos haces de protones del LHC del CERN. Su diseño está lleno de restricciones que requieren diseños novedosos: minimizar la materia cerca del punto de colisión, diseño de componentes que soporten radiación, transmisión de datos a alta tasa y el procesado de los mismos, sincronización del sistema, etc. El trabajo presentado en esta tesis se centra en: por un lado, la validación del hardware y sus diferentes prototipos, por otro lado, el diseño del firmware de las FPGAs encargadas del control, sincronización y adquisición de datos del VELO

    Dynamically reconfigurable long-reach PONs for high capacity access

    Get PDF
    Fibre-to-the-Premises (FTTP) is currently seen as the ultimate in high-speed transmission technologies for delivering ubiquitous bandwidth to customers. However, as the deployment of network infrastructure requires a substantial investment, the main obstacle to fibre deployment is that of financial viability. With this in mind, a logical strategy to offset network costs is to optimise the infrastructure in order to capture a greater amount of customers over larger areas with increased sharing of network resources. This approach prompted the design of a long-reach passive optical network (LR-PON) in which the physical reach and split of a conventional PON is significantly increased through the use of intermediate optical amplification. In particular, the LR-PON architecture effectively integrates the metro and access networks enabling the majority of local exchange sites to be bypassed resulting in a substantial reduction in field equipment requirements and power consumption. Furthermore, the extension in physical reach and split can be coupled with an increased information capacity through the use of time- and wavelength division multiplexing (TWDM) which serve to exploit the large bandwidth capabilities offered by single-mode fibre. In this project, reconfigurable TWDM LR-PON architectures which dynamically exploit the wavelength domain are proposed, assembled and characterised in order to establish an economically viable ‘open access’ environment that is capable of concurrently supporting multiple operators offering converged services (residential, business and mobile) to support diverse customer requirements and locations. The main investigations in this work address the key physical layer challenges within such wavelength-agile networks. In particular, a range of experimental analysis has been carried out in order to realise the critical component technologies which include low-cost, 10G-capable, wavelength-tuneable transmitters for mass-market residential deployment and the development of gain-stabilised optical amplifier nodes to support the targeted physical reach (≥ 100km) and split (≥ 512). Finally, the feasibility of the proposed dynamically reconfigurable LR-PON configurations as a flexible and cost-effective solution for future access networks is verified through full-scale network demonstrations using an experimental laboratory test-bed

    Design and Development of a Multi-Purpose Input Output Controller Board for the SPES Control System

    Get PDF
    This PhD work has been carried out at the Legnaro National Laboratories (LNL), one of the four national labs of the National Institute for Nuclear Physics (INFN). The mission of LNL is to perform research in the field of nuclear physics and nuclear astrophysics together with emerging technologies. Technological research and innovation are the key to promote excellence in science, to excite competitive industries and to establish a better society. The research activities concerning electronics and computer science are an essential base to develop the control system of the Selective Production of Exotic Species (SPES) project. Nowadays, SPES is the most important project commissioned at LNL and represents the future of the Lab. It is a second generation Isotope Separation On-Line (ISOL) radioactive ion beam facility intended for fundamental nuclear physics research as well as experimental applications in different fields of science, such as nuclear medicine; radio-pharmaceutical production for therapy and diagnostic. The design of the SPES control system demands innovative technologies to embed the control of several appliances with different requirements and performing different tasks spanning from data sharing and visualization, data acquisition and storage, networking, security and surveillance operations, beam transport and diagnostic. The real time applications and fast peripherals control commonly found in the distributed control network of particle accelerators are accompanied by the challenge of developing custom embedded systems. In this context, the proposed PhD work describes the design and development of a multi-purpose Input Output Controller (IOC) board capable of embedding the control of typical accelerator instrumentation involved in the automatic beam transport system foreseen for the SPES project. The idea behind this work is to extend the control reach to the single device level without losing in modularity and standardization. The outcome of the research work is a general purpose embedded computer that will be the base for standardizing the hardware layer of the frontend computers in the SPES distributed control system. The IOC board is a Computer-on-Module (COM) carrier board designed to host any COM Express type 6 module and is equipped with a Field Programmable Gate Array (FPGA) and user application specific I/O connection solutions not found in a desktop pc. All the generic pc functionalities are readily available in off-the-shelf modules and the result is a custom motherboard that bridges the gap between custom developments and commercial personal computers. The end user can deal with a general-purpose pc with a high level of hardware abstraction besides being able to exploit the on-board FPGA potentialities in terms of fast peripherals control and real time digital data processing. This document opens with an introductory chapter about the SPES project and its control system architecture and technology before to describe the IOC board design, prototyping, and characterization. The thesis ends describing the installation in the field of the IOC board which is the core of the new diagnostics data readout and signal processing system. The results of the tests performed under real beam conditions prove that the new hardware extends the current sensitivity to the pA range, addressing the SPES requirements, and prove that the IOC board is a reliable solution to standardize the control of several appliances in the SPES accelerators complex where it will be embedded into physical equipment, or in their proximity, and will control and monitor their operation replacing the legacy VME technology. The installation in the field of the IOC board represents a great personal reward and crowns these years of busy time during which I turned what was just an idea in 2014, into a working embedded computer today

    Millimetre-wave radio-over-fibre supported multi-antenna and multi-user transmission

    Get PDF
    In this thesis, various features of the RoF supported mmW communication for future wireless systems have been analysed including photonic generation of mmW for MIMO operation, performance analysis of mmW MIMO to achieve spatial diversity and spatial multiplexing with analog RoF fronthaul, and multi-user transmission in the 60 GHz-band using multiplexing-over-fibre transport and frequency-selective antenna. A low cost mmW generation system for two independent MIMO signals has been presented, consisting of a single optical Phase Modulator (PM). The different aspects of experimental analysis on RoF-supported mmW MIMO in this thesis, which were not considered before, include use of specific MIMO algorithm to understand the amount of improvement in coverage and data rate for a particular MIMO technique, performance comparison with SISO at several user locations, and verification of optimum RAU physical spacing for a particular transmission distance with the theoretical results. The results show that flexible and wider RAU spacings, required to obtain optimum performance in a mmW MIMO system, can be achieved using the proposed analog RoF fronthaul. The investigation was extended to verification of a method to individual measurement of mmW channel coefficients and performing MIMO processing, which shows that mmW channels are relatively static and analysis can be extended to much longer distances and making projections for N×N MIMO. For mmW multi-user transmission, a novel low cost, low complexity system using single RoF link and single RF chain with single transmitting antenna has been presented and characterized, which was based on large number of RF chains and multiple antenna units previously. The setup involves generation and RoF transport of a composite SCM signal, upconversion at the RAU and transmission of different frequency channels towards spatially distributed users using a frequency-selective Leaky-Wave-Antenna (LWA), to convert Frequency Division Multiplexing (FDM) in to Spatial Division Multiple Access (SDMA). Analysis on low user-signal spacing for the SCM shows the feasibility to serve a large number of users within a specific transmission bandwidth and experimental demonstration to achieve sum rate of 10Gb/s is shown by serving 20 users simultaneously. Furthermore, investigation on SNR degradation of high bandwidth signals due to beamsteering effect of the LWA and theoretical calculations of the sum data rate for different number of users is performed, which shows that the proposed system can provide much higher sum rates with high available SNR. It was also experimentally demonstrated that improvement in coverage and spectral efficiency is obtained by operating multiple LWAs using single RF chain. Finally, an experimental demonstration of a DWDM-RoF based 60 GHz multi-user transmission using single LWA is presented to show the feasibility to extend the setup for a multiple RAU based system, serving each at distinct optical wavelength and performing direct photonic upconversion at the RAU for low cost mmW generation

    Receptores de rádio-frequência melhorados e disruptivos

    Get PDF
    This Ph.D. mainly addresses the reception part of a radio front end, focusing on Radio Frequency (RF) sampling architectures. These are considered to be the most promising future candidates to get better performance in terms of bandwidth and agility, following the well-known Software-Defined Radio (SDR) concept. The study considers the usage of an RF receiver in a standalone operation, i.e., used for receiving unknown data at the antenna, and when used as observation path for Power Amplifier (PA) linearization via Digital Predistortion (DPD), since nowadays this represents a mandatory technique to increase overall system’s performance. Firstly, commercial available RF Analog-Digital-Converters (ADCs) are studied and characterized to understand their limitations when used in DPD scenarios. A method for characterization and digital post-compensation to improve performance is proposed and evaluated. Secondly, an innovative FPGA-based RF single-bit pulsed converter based on Pulse Width Modulation (PWM) is addressed targeting frequency agility, high analog input bandwidth, and system integration, taking profit of an FPGA-based implementation. The latter was optimized based on PWM theoretical behavior maximizing Signal-to-Noise-Ratio (SNR) and bandwidth. The optimized receiver, was afterwards evaluated in a 5G C-RAN architecture and as a feedback loop for DPD. Finally, a brief study regarding DPD feedback loops in the scope of multiantenna transmitters is presented. This Ph.D. contributes with several advances to the state-of-the-art of SDR receiver, and to the so-called SDR DPD concept.Este doutoramento endereça principalmente a componente de receção de um transcetor de rádio-frequência (RF), focando-se em arquiteturas de receção de amostragem em RF. Estas são assim consideradas como sendo as mais promissoras para o futuro, em termos de desempenho, largura de banda e agilidade, de acordo com o conhecido conceito de Rádios Definidos por Software (SDR). O estudo considera o uso dos recetores de RF em modo standalone, i.e., recebendo dados desconhecidos provenientes da antena, e também quando usados como caminho de observação para aplicação de linearização de amplificadores de potência (PAs) via pré-distorção digital (DPD), pois atualmente esta é uma técnica fundamental para aumentar o desempenho geral do sistema. Em primeiro lugar, os conversores analógico-digital de RF são estudados e caracterizados para perceber as suas limitações quando usados em cenários de DPD. Um método de caracterização e pós compensação digital é proposto para obter melhorias de desempenho. Em segundo lugar, um novo recetor pulsado de um bit baseado em Modulação de Largura de Pulso (PWM) e implementado em Agregado de Células Lógicas Programáveis (FPGA) é endereçado, visando agilidade em frequência, largura de banda analógica e integração de sistema, tirando proveito da implementação em FPGA. Este recetor foi otimizado com base no modelo comportamental teórico da modulação PWM, maximizando a relação sinalruído (SNR) e a largura de banda. O recetor otimizado foi posteriormente avaliado num cenário 5G de uma arquitetura C-RAN e também num cenário em que serve de caminho de observação para DPD. Finalmente, um breve estudo relativo a caminhos de observação de DPD no contexto de transmissores multi-antena é também apresentado. Este doutoramento contribui com vários avanços no estado da arte de recetores SDR e no conceito de SDR DPD.Programa Doutoral em Engenharia Eletrotécnic

    Demonstration of a partially integrated silicon photonics ONU in a self-coherent reflective FDMA PON

    Get PDF
    We report about the final results of the FABULOUS European project, demonstrating the feasibility of real-time Ethernet transmission on a self-coherent reflective passive optical network, using an optical network unit (ONU) whose main optical functions are performed by a silicon-photonics device; 500 Mbps per user with a power budget of 24 dB in offline processing and 21 dB in real time is shown. We also report details about the packaging process and the special technique developed for the flip-chipping of a CMOS electrical driver, used for driving the ONU with low voltage, onto a silicon Mach-Zehnder modulator
    corecore