3,388 research outputs found

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    A discriminative approach to grounded spoken language understanding in interactive robotics

    Get PDF
    Spoken Language Understanding in Interactive Robotics provides computational models of human-machine communication based on the vocal input. However, robots operate in specific environments and the correct interpretation of the spoken sentences depends on the physical, cognitive and linguistic aspects triggered by the operational environment. Grounded language processing should exploit both the physical constraints of the context as well as knowledge assumptions of the robot. These include the subjective perception of the environment that explicitly affects linguistic reasoning. In this work, a standard linguistic pipeline for semantic parsing is extended toward a form of perceptually informed natural language processing that combines discriminative learning and distributional semantics. Empirical results achieve up to a 40% of relative error reduction

    Evaluation of Virtual Acoustic Environments with Different Acoustic Level of Detail

    Full text link
    Virtual acoustic environments enable the creation and simulation of realistic and ecologically valid daily-life situations with applications in hearing research and audiology. Hereby, reverberant indoor environments play an important role. For real-time applications, simplifications in the room acoustics simulation are required, however, it remains unclear what acoustic level of detail (ALOD) is necessary to capture all perceptually relevant effects. This study investigates the effect of varying ALOD in the simulation of three different real environments, a living room with a coupled kitchen, a pub, and an underground station. ALOD was varied by generating different numbers of image sources for early reflections, or by excluding geometrical room details specific for each environment. The simulations were perceptually evaluated using headphones in comparison to binaural room impulse responses measured with a dummy head in the corresponding real environments. The study assessed the perceived overall difference for a pink pulse, and a speech token. Furthermore, plausibility and externalization were evaluated. The results show that a strong reduction in ALOD is possible while obtaining similar plausibility and externalization as with dummy head recordings. The number and accuracy of early reflections appear less relevant, provided diffuse late reverberation is appropriately accounted for.Comment: This work has been submitted to the I3DA 2023 International Conference on Immersive and 3D Audio for possible publicatio

    Finding perceptually optimal operating points of a real time interactive video-conferencing system

    Get PDF
    This research aims to address issues faced by real time video-conferencing systems in locating a perceptually optimal operating point under various network and conversational conditions. In order to determine the perceptually optimal operating point of a video-conferencing system, we must first be able to conduct a fair assessment of the quality of the current operating point in the system and compare it with another operating point to determine if one is better than the other in terms of perceptual quality. However at this point in time, there does not exist one objective quality metric that can accurately and fully describe the perceptual quality of a real time video conversation. Hence there is a need for a controlled environment to allow tests to be conducted in and in which we can study different metrics and identify the best trade-offs between them. We begin by studying the components of a typical setup of a real time video-conferencing system and the impacts that various network and conversation conditions can have on the overall perceptual quality. We also look into different metrics available to measure those impacts. We then created a platform to perform black box testing on current video conferencing systems and observe how they handle the changes in operating conditions. The platform is then used to conduct a brief evaluation of the performance of Skype, a popular commercial video-conferencing system. However, we are not able to modify the system parameters of Skype. The main contribution of this thesis is the design of a new testbed that provides a controlled environment to allow tests to be conducted to determine the perceptual optimum operating point of a video conversation under specified network and conversation conditions. This testbed will allow us to modify certain parameters, such as frame rate and frame size, which were not previously possible. The testbed takes as input, two recorded videos of the two speakers of a face-to-face conversation and desired output video parameters, such as frame rate, frame size and delay. A video generation algorithm is designed as part of the testbed to handle modifications to frame rate and frame size of the videos as well as delays inserted into the recorded video conversation to simulate the effects of network delays. The most important issue addressed is the generation of new frames to fill up the gaps created due to a change in frame rate or delay inserted, unlike as in the case of voice, where a period of silence can simply be used to handle these situations. The testbed uses a packetization strategy designed on the basis of an uneven packet transmission rate (UPTR) and that handles the packetization of interleaved video and audio data; it also uses piggybacking to provide redundancy if required. Losses can be injected either randomly or based on packet traces collected via PlanetLab. The processed videos will then be pieced together side-by-side to give the viewpoint of a third-party observing the video conversation from the site of the first speaker. Hence the first speaker will be observed to have a faster reaction time without network delays than that of the second speaker who is simulated to be located at the remote end. The video of the second speaker will also reflect the degradations in perceptual quality induced by the network conditions, whereas the first speaker will be of perfect quality. Hence with the testbed, we are able to generate output videos for different operating points under the same network and conversational conditions and thus able to make comparisons between two operating points. With the testbed in place, we demonstrate how it can be used to evaluate the effects of various parameters on the overall perceptual quality. Lastly, we demonstrate the results of applying an existing efficient search algorithm used for estimating the perceptually optimal mouth-to-ear delay (MED) of a Voice-over-IP(VoIP) conversation to a Video Conversation. This is achieved by using the network simulator designed to conduct a series of subjective and objective tests to identify the perceptual optimum MED under specific network and conversational conditions

    Evaluation of Psychoacoustic Sound Parameters for Sonification

    Get PDF
    Sonification designers have little theory or experimental evidence to guide the design of data-to-sound mappings. Many mappings use acoustic representations of data values which do not correspond with the listener's perception of how that data value should sound during sonification. This research evaluates data-to-sound mappings that are based on psychoacoustic sensations, in an attempt to move towards using data-to-sound mappings that are aligned with the listener's perception of the data value's auditory connotations. Multiple psychoacoustic parameters were evaluated over two experiments, which were designed in the context of a domain-specific problem - detecting the level of focus of an astronomical image through auditory display. Recommendations for designing sonification systems with psychoacoustic sound parameters are presented based on our results

    Geolocation Adaptive Music Player

    Get PDF
    date-added: 2017-12-22 20:02:39 +0000 date-modified: 2017-12-22 20:05:50 +0000 keywords: adaptive music, intelligent music player, semantic audio, feature extraction bdsk-url-1: https://smartech.gatech.edu/bitstream/handle/1853/54586/WAC2016-47.pdfdate-added: 2017-12-22 20:02:39 +0000 date-modified: 2017-12-22 20:05:50 +0000 keywords: adaptive music, intelligent music player, semantic audio, feature extraction bdsk-url-1: https://smartech.gatech.edu/bitstream/handle/1853/54586/WAC2016-47.pdfWe present a web-based cross-platform adaptive music player that combines music information retrieval (MIR) and audio processing technologies with the interaction capabilities offered by GPS-equipped mobile devices. The application plays back a list of music tracks, which are linked to geographic paths in a map. The music player has two main enhanced features that adjust to the location of the user, namely, adaptable length of the songs and automatic transitions between tracks. Music tracks are represented as data packages containing audio and metadata (descriptive and behavioral) that builds on the concept of Digital Music Object (DMO). This representation, in line with nextgeneration web technologies, allows for exible production and consumption of novel musical experiences. A content provider assembles a data pack with music, descriptive analysis and action parameters that users can experience and control within the restrictions and templates defined by the provider

    Introduction: The Third International Conference on Epigenetic Robotics

    Get PDF
    This paper summarizes the paper and poster contributions to the Third International Workshop on Epigenetic Robotics. The focus of this workshop is on the cross-disciplinary interaction of developmental psychology and robotics. Namely, the general goal in this area is to create robotic models of the psychological development of various behaviors. The term "epigenetic" is used in much the same sense as the term "developmental" and while we could call our topic "developmental robotics", developmental robotics can be seen as having a broader interdisciplinary emphasis. Our focus in this workshop is on the interaction of developmental psychology and robotics and we use the phrase "epigenetic robotics" to capture this focus
    • …
    corecore