34 research outputs found

    Integrated Framework For Mobile Low Power IoT Devices

    Get PDF
    Ubiquitous object networking has sparked the concept of the Internet of Things (IoT) which defines a new era in the world of networking. The IoT principle can be addressed as one of the important strategic technologies that will positively influence the humans’ life. All the gadgets, appliances and sensors around the world will be connected together to form a smart environment, where all the entities that connected to the Internet can seamlessly share data and resources. The IoT vision allows the embedded devices, e.g. sensor nodes, to be IP-enabled nodes and interconnect with the Internet. The demand for such technique is to make these embedded nodes act as IP-based devices that communicate directly with other IP networks without unnecessary overhead and to feasibly utilize the existing infrastructure built for the Internet. In addition, controlling and monitoring these nodes is maintainable through exploiting the existed tools that already have been developed for the Internet. Exchanging the sensory measurements through the Internet with several end points in the world facilitates achieving the concept of smart environment. Realization of IoT concept needs to be addressed by standardization efforts that will shape the infrastructure of the networks. This has been achieved through the IEEE 802.15.4, 6LoWPAN and IPv6 standards. The bright side of this new technology is faced by several implications since the IoT introduces a new class of security issues, such as each node within the network is considered as a point of vulnerability where an attacker can utilize to add malicious code via accessing the nodes through the Internet or by compromising a node. On the other hand, several IoT applications comprise mobile nodes that is in turn brings new challenges to the research community due to the effect of the node mobility on the network management and performance. Another defect that degrades the network performance is the initialization stage after the node deployment step by which the nodes will be organized into the network. The recent IEEE 802.15.4 has several structural drawbacks that need to be optimized in order to efficiently fulfil the requirements of low power mobile IoT devices. This thesis addresses the aforementioned three issues, network initialization, node mobility and security management. In addition, the related literature is examined to define the set of current issues and to define the set of objectives based upon this. The first contribution is defining a new strategy to initialize the nodes into the network based on the IEEE 802.15.4 standard. A novel mesh-under cluster-based approach is proposed and implemented that efficiently initializes the nodes into clusters and achieves three objectives: low initialization cost, shortest path to the sink node, low operational cost (data forwarding). The second contribution is investigating the mobility issue within the IoT media access control (MAC) infrastructure and determining the related problems and requirements. Based on this, a novel mobility scheme is presented that facilitates node movement inside the network under the IEEE 802.15.4e time slotted channel hopping (TSCH) mode. The proposed model mitigates the problem of frequency channel hopping and slotframe issue in the TSCH mode. The next contribution in this thesis is determining the mobility impact on low latency deterministic (LLDN) network. One of the significant issues of mobility is increasing the latency and degrading packet delivery ratio (PDR). Accordingly, a novel mobility protocol is presented to tackle the mobility issue in LLDN mode and to improve network performance and lessen impact of node movement. The final contribution in this thesis is devising a new key bootstrapping scheme that fits both IEEE 802.15.4 and 6LoWPAN neighbour discovery architectures. The proposed scheme permits a group of nodes to establish the required link keys without excessive communication/computational overhead. Additionally, the scheme supports the mobile node association process by ensuring secure access control to the network and validates mobile node authenticity in order to eliminate any malicious node association. The purposed key management scheme facilitates the replacement of outdated master network keys and release the required master key in a secure manner. Finally, a modified IEEE 802.15.4 link-layer security structure is presented. The modified architecture minimizes both energy consumption and latency incurred through providing authentication/confidentiality services via the IEEE 802.15.4

    Efficient Control Message Dissemination in Dense Wireless Lighting Networks

    Get PDF
    Modern lighting systems using LED light sources lead to dense lighting installations. The control of such systems using wireless Machine-to-Machine (M2M) where standard LED light sources are replaced by wirelessly controllable LED light sources create new problems which are investigated in this thesis. Current approaches for control message transmission is such networks are based on broadcasting messages among luminaires. However, adequate communication performance - in particular, sufficiently low latency and synchronicity - is difficult to ensure in such networks, in particular, if the network is part of a wireless building management system and carries not only low-latency broadcast messages but also collects data from sensors. In this thesis, the problem of simultaneously controlling dense wireless lighting control networks with a higher number of luminaires is addressed. Extensive computer simulation shows that current state-of-the-art protocols are not suitable for lighting control applications, especially if complex applications are required such as dimming or colour tuning. The novel D³LC-Suite is proposed, which is specially designed for dense wireless lighting control networks. This suite includes three sub-protocols. First, a protocol to organize a network in form of a cluster tree named CIDER. To ensure that intra-cluster messages can be exchanged simultaneously, a weighted colouring algorithm is applied to reduce the inter cluster interference. To disseminate efficiently control messages a protocol is proposed named RLL. The D³LC-Suite is evaluated and validated using different methods. A convergence analysis show that CIDER is able to form a network in a matter of minutes. Simulation results of RLL indicate that this protocol is well suited for dense wireless applications. In extensive experiments, it is shown that the D³LC-Suite advances the current state-of-the-art in several aspects. The suite is able to deliver control messages across multiple hops meeting the requirements of lighting applications. Especially, it provides a deterministic latency, very promising packet loss ratios in low interference environments, and mechanisms for simultaneous message delivery which is important in terms of Quality of Experience (QoE

    Energy-Efficient Communication in Wireless Networks

    Get PDF
    This chapter describes the evolution of, and state of the art in, energy‐efficient techniques for wirelessly communicating networks of embedded computers, such as those found in wireless sensor network (WSN), Internet of Things (IoT) and cyberphysical systems (CPS) applications. Specifically, emphasis is placed on energy efficiency as critical to ensuring the feasibility of long lifetime, low‐maintenance and increasingly autonomous monitoring and control scenarios. A comprehensive summary of link layer and routing protocols for a variety of traffic patterns is discussed, in addition to their combination and evaluation as full protocol stacks

    Relevance- and Aggregation-based Scheduling for Data Transmission in IEEE 802.15.4e IoT Networks

    Get PDF
    Master's thesis Information- and communication technology IKT590 - University of Agder 2017Internet of thing (IoT) is regarded as a new communicating paradigm with Internet connectivity enabling embedded devices to interact with each other on a global scale. IoT has the potential to become the largest producer of information because of a massive number of connected devices with diverse applications ranging from environmental monitoring, home, and building automation. This ubiquitous connectivity requires reliability, efficiency, and sustainability of access to information. As an enabling technology, wireless sensor networks (WSNs) have opened new opportunity with recent technological developments in making miniaturized smart connected devices. With an increase in the activity of these smart devices, there are challenges in maintaining their limited energy, lifetime, and reliability required for IoT applications. The reason is that these devices are mostly battery powered. In this respect, an insight into the activities of sensing devices produced by different vendors with interoperability based on industrial standards is needed. As an enhancement of IEEE 802.15.4 MAC sublayer, the ratification of IEEE 802.15.4e standard makes a step towards IoT medium access control (MAC) for industrial applications. One of the significant enhancements in IEEE 802.15.4e is different MAC modes. However, IEEE 802.15.4e does not specify standardized scheduling policy for network building and data transmission maintenance. It is basically application specific. In general, activities performed at the MAC sublayer contribute to sensor energy consumption. Therefore, an efficient MAC scheme is needed to utilize network resources more efficiently, minimize energy consumption level and at the same time improve data transmission of the network. In this thesis work, we focus on proposing transmission schemes for improving energy consumption for data transmission in IoT networks and as well as increasing average packet delivery ratio (PDR). Our target is to improve time slotted channel hopping (TSCH) mode that enables deterministic access and robust network. The focus is on dedicated and shared slots in TSCH. More specifically, we propose two MAC schemes; relevance- and aggregation-based scheduling for data transmission in IEEE 802.15.4e IoT networks. With relevance-based scheduling, the coordinator node builds and maintains communication in the network based on a historical data value of member nodes. On the other hand, aggregation-based scheduling iii enables the coordinator node to build and maintain communication by integrating multiple data inside a single frame payload at the source node before transmission. Further, the proposed schemes are implemented using network simulator version 3 (ns-3). We use Ubuntu 16.04.2 as the operating system for our implementation and performance evaluation. Numerical results for a few performance metrics including PDR, collision probability, delay, and energy consumption are obtained through extensive simulations. The superiority of the proposed schemes is demonstrated by comparing the simulation results with that of IEEE 802.15.4e TSCH standard under varies network scenario

    Synchronous and Concurrent Transmissions for Consensus in Low-Power Wireless

    Get PDF
    With the emergence of the Internet of Things, autonomous vehicles and the Industry 4.0, the need for dependable yet adaptive network protocols is arising. Many of these applications build their operations on distributed consensus. For example, UAVs agree on maneuvers to execute, and industrial systems agree on set-points for actuators.Moreover, such scenarios imply a dynamic network topology due to mobility and interference, for example. Many applications are mission- and safety-critical, too.Failures could cost lives or precipitate economic losses.In this thesis, we design, implement and evaluate network protocols as a step towards enabling a low-power, adaptive and dependable ubiquitous networking that enables consensus in the Internet of Things. We make four main contributions:- We introduce Orchestra that addresses the challenge of bringing TSCH (Time Slotted Channel Hopping) to dynamic networks as envisioned in the Internet of Things. In Orchestra, nodes autonomously compute their local schedules and update automatically as the topology evolves without signaling overhead. Besides, it does not require a central or distributed scheduler. Instead, it relies on the existing network stack information to maintain the schedules.- We present A2 : Agreement in the Air, a system that brings distributed consensus to low-power multihop networks. A2 introduces Synchrotron, a synchronous transmissions kernel that builds a robust mesh by exploiting the capture effect, frequency hopping with parallel channels, and link-layer security. A2 builds on top of this layer and enables the two- and three-phase commit protocols, and services such as group membership, hopping sequence distribution, and re-keying.- We present Wireless Paxos, a fault-tolerant, network-wide consensus primitive for low-power wireless networks. It is a new variant of Paxos, a widely used consensus protocol, and is specifically designed to tackle the challenges of low-power wireless networks. By utilizing concurrent transmissions, it provides a dependable low-latency consensus.- We present BlueFlood, a protocol that adapts concurrent transmissions to Bluetooth. The result is fast and efficient data dissemination in multihop Bluetooth networks. Moreover, BlueFlood floods can be reliably received by off-the-shelf Bluetooth devices such as smartphones, opening new applications of concurrent transmissions and seamless integration with existing technologies

    Energy aware optimization for low power radio technologies

    Get PDF
    The explosive growth of IoT is pushing the market towards cheap, very low power devices with a strong focus on miniaturization, for applications such as in-body sensors, personal health monitoring and microrobots. Proposing procedures for energy efficiency in IoT is a difficult task, as it is a rapidly growing market comprised of many and very diverse product categories using technologies that are not stable, evolving at a high pace. The research in this field proposes solutions that go from physical layer optimization up to the network layer, and the sensor network designer has to select the techniques that are best for its application specific architecture and radio technology used. This work is focused on exploring new techniques for enhancing the energy efficiency and user experience of IoT networks. We divide the proposed techniques in frame and chip level optimization techniques, respectively. While the frame level techniques are meant to improve the performance of existing radio technologies, the chip level techniques aim at replacing them with crystal-free architectures. The identified frame level techniques are the use of preamble authentication and packet fragmentation, advisable for Low Power Wide Area Networks (LPWANs), a technology that offers the lowest energy consumption per provided service, but is vulnerable in front of energy exhaustion attacks and does not perform well in dense networks. The use of authenticated preambles between the sensors and gateways becomes a defence mechanism against the battery draining intended by attackers. We show experimentally that this approach is able to reduce with 91% the effect of an exhaustion attack, increasing the device's lifetime from less than 0.24 years to 2.6 years. The experiments were conducted using Loadsensing sensor nodes, commercially used for critical infrastructure control and monitoring. Even if exemplified on LoRaWAN, the use of preamble authentication is extensible to any wireless protocol. The use of packet fragmentation despite the packet fits the frame, is shown to reduce the probability of collisions while the number of users in the duty-cycle restricted network increases. Using custom-made Matlab simulations, important goodput improvement was obtained with fragmentation, with higher impact in slower and denser networks. Using NS3 simulations, we showed that combining packet fragmentation with group NACK can increase the network reliability, while reducing the energy consumed for retransmissions, at the cost of adding small headers to each fragment. It is a strategy that proves to be effective in dense duty-cycle restricted networks only, where the headers overhead is negligible compared to the network traffic. As a chip level technique, we consider using radios for communication that do not use external frequency references such as crystal oscillators. This would enable having all sensor's elements on a single piece of silicon, rendering it even ten times more energy efficient due to the compactness of the chip. The immediate consequence is the loss of communication accuracy and ability to easily switch communication channels. In this sense, we propose a sequence of frequency synchronization algorithms and phases that have to be respected by a crystal-free device so that it can be able to join a network by finding the beacon channel, synthesize all communication channels and then maintain their accuracy against temperature change. The proposed algorithms need no additional network overhead, as they are using the existing network signaling. The evaluation is made in simulations and experimentally on a prototype implementation of an IEEE802.15.4 crystal-free radio. While in simulations we are able to change to another communication channel with very good frequency accuracy, the results obtained experimentally show an initial accuracy slightly above 40ppm, which will be later corrected by the chip to be below 40 ppm.El crecimiento significativo de la IoT está empujando al mercado hacia el desarrollo de dispositivos de bajo coste, de muy bajo consumo energético y con un fuerte enfoque en la miniaturización, para aplicaciones que requieran sensores corporales, monitoreo de salud personal y micro-robots. La investigación en el campo de la eficiencia energética en la IoT propone soluciones que van desde la optimización de la capa física hasta la capa de red. Este trabajo se centra en explorar nuevas técnicas para mejorar la eficiencia energética y la experiencia del usuario de las redes IoT. Dividimos las técnicas propuestas en técnicas de optimización de nivel de trama de red y chip, respectivamente. Si bien las técnicas de nivel de trama están destinadas a mejorar el rendimiento de las tecnologías de radio existentes, las técnicas de nivel de chip tienen como objetivo reemplazarlas por arquitecturas que no requieren de cristales. Las técnicas de nivel de trama desarrolladas en este trabajo son el uso de autenticación de preámbulos y fragmentación de paquetes, aconsejables para redes LPWAN, una tecnología que ofrece un menor consumo de energía por servicio prestado, pero es vulnerable frente a los ataques de agotamiento de energía y no escalan frente la densificación. El uso de preámbulos autenticados entre los sensores y las pasarelas de enlace se convierte en un mecanismo de defensa contra el agotamiento del batería previsto por los atacantes. Demostramos experimentalmente que este enfoque puede reducir con un 91% el efecto de un ataque de agotamiento, aumentando la vida útil del dispositivo de menos de 0.24 años a 2.6 años. Los experimentos se llevaron a cabo utilizando nodos sensores de detección de carga, utilizados comercialmente para el control y monitoreo de infrastructura crítica. Aunque la técnica se ejemplifica en el estándar LoRaWAN, el uso de autenticación de preámbulo es extensible a cualquier protocolo inalámbrico. En esta tesis se muestra también que el uso de la fragmentación de paquetes a pesar de que el paquete se ajuste a la trama, reduce la probabilidad de colisiones mientras aumenta el número de usuarios en una red con restricciones de ciclos de transmisión. Mediante el uso de simulaciones en Matlab, se obtiene una mejora importante en el rendimiento de la red con la fragmentación, con un mayor impacto en redes más lentas y densas. Usando simulaciones NS3, demostramos que combinar la fragmentación de paquetes con el NACK en grupo se puede aumentar la confiabilidad de la red, al tiempo que se reduce la energía consumida para las retransmisiones, a costa de agregar pequeños encabezados a cada fragmento. Como técnica de nivel de chip, consideramos el uso de radios para la comunicación que no usan referencias de frecuencia externas como los osciladores basados en un cristal. Esto permitiría tener todos los elementos del sensor en una sola pieza de silicio, lo que lo hace incluso diez veces más eficiente energéticamente debido a la integración del chip. La consecuencia inmediata, en el uso de osciladores digitales en vez de cristales, es la pérdida de precisión de la comunicación y la capacidad de cambiar fácilmente los canales de comunicación. En este sentido, proponemos una secuencia de algoritmos y fases de sincronización de frecuencia que deben ser respetados por un dispositivo sin cristales para que pueda unirse a una red al encontrar el canal de baliza, sintetizar todos los canales de comunicación y luego mantener su precisión contra el cambio de temperatura. Los algoritmos propuestos no necesitan una sobrecarga de red adicional, ya que están utilizando la señalización de red existente. La evaluación se realiza en simulaciones y experimentalmente en una implementación prototipo de una radio sin cristal IEEE802.15.4. Los resultados obtenidos experimentalmente muestran una precisión inicial ligeramente superior a 40 ppm, que luego será corregida por el chip para que sea inferior a 40 ppm.Postprint (published version

    Self-Organizing Maps Applied to Soil Conservation in Mediterranean Olive Groves

    Get PDF
    International audienceSoil degradation and hot climate explain the poor yield of olive groves in North Algeria. Edaphic and climatic data were collected from olive groves and analyzed by Self-Organizing Maps (SOMs). SOM is a non-supervised neural network that projects high-dimensional data onto a low-dimension topological map, while preserving the neighborhood. In this paper, we show how SOMs enable farmers to determine clusters of olive groves, to characterize them, to study their evolution and to decide what to do to improve the nutritional quality of oil. SOM can be integrated in the Intelligent Farming System to boost conservation agriculture

    Pervasive service discovery in low-power and lossy networks

    Get PDF
    Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is expected to play a major role in realising the Internet of Things (IoT) vision. Such a vision aims to expand the current Internet to interconnect billions of miniature smart objects that sense and act on our surroundings in a way that will revolutionise the future. The pervasiveness and heterogeneity of such low-power devices requires robust, automatic, interoperable and scalable deployment and operability solutions. At the same time, the limitations of such constrained devices impose strict challenges regarding complexity, energy consumption, time-efficiency and mobility. This research contributes new lightweight solutions to facilitate automatic deployment and operability of LLNs. It mainly tackles the aforementioned challenges through the proposition of novel component-based, automatic and efficient SD solutions that ensure extensibility and adaptability to various LLN environments. Building upon such architecture, a first fully-distributed, hybrid pushpull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is proposed based on the well-known Trickle algorithm. Motivated by EADPs’ achievements, new methods to optimise Trickle are introduced. Such methods allow Trickle to encompass a wide range of algorithms and extend its usage to new application domains. One of the new applications is concretized in the TrickleSD protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast communication in LLNs are proposed. Finally, interoperable standards-based SD in the IoT is demonstrated, and methods combining zero-configuration operations with infrastructure-based solutions are proposed. Experimental evaluations of the above contributions reveal that it is possible to achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD in LLNs. These achievements open novel perspectives for zero-configuration capabilities in the IoT and promise to bring the ‘things’ to all people everywhere
    corecore