863 research outputs found

    Optimizing resilience decision-support for natural gas networks under uncertainty

    Get PDF
    2019 Summer.Includes bibliographical references.Community resilience in the aftermath of a hazard requires the functionality of complex, interdependent infrastructure systems become operational in a timely manner to support social and economic institutions. In the context of risk management and community resilience, critical decisions should be made not only in the aftermath of a disaster in order to immediately respond to the destructive event and properly repair the damage, but preventive decisions should to be made in order to mitigate the adverse impacts of hazards prior to their occurrence. This involves significant uncertainty about the basic notion of the hazard itself, and usually involves mitigation strategies such as strengthening components or preparing required resources for post-event repairs. In essence, instances of risk management problems that encourage a framework for coupled decisions before and after events include modeling how to allocate resources before the disruptive event so as to maximize the efficiency for their distribution to repair in the aftermath of the event, and how to determine which network components require preventive investments in order to enhance their performance in case of an event. In this dissertation, a methodology is presented for optimal decision making for resilience assessment, seismic risk mitigation, and recovery of natural gas networks, taking into account their interdependency with some of the other systems within the community. In this regard, the natural gas and electric power networks of a virtual community were modeled with enough detail such that it enables assessment of natural gas network supply at the community level. The effect of the industrial makeup of a community on its natural gas recovery following an earthquake, as well as the effect of replacing conventional steel pipes with ductile HDPE pipelines as an effective mitigation strategy against seismic hazard are investigated. In addition, a multi objective optimization framework that integrates probabilistic seismic risk assessment of coupled infrastructure systems and evolutionary algorithms is proposed in order to determine cost-optimal decisions before and after a seismic event, with the objective of making the natural gas network recover more rapidly, and thus the community more resilient. Including bi-directional interdependencies between the natural gas and electric power network, strategic decisions are pursued regarding which distribution pipelines in the gas network should be retrofitted under budget constraints, with the objectives to minimizing the number of people without natural gas in the residential sector and business losses due to the lack of natural gas in non-residential sectors. Monte Carlo Simulation (MCS) is used in order to propagate uncertainties and Probabilistic Seismic Hazard Assessment (PSHA) is adopted in order to capture uncertainties in the seismic hazard with an approach to preserve spatial correlation. A non-dominated sorting genetic algorithm (NSGA-II) approach is utilized to solve the multi-objective optimization problem under study. The results prove the potential of the developed methodology to provide risk-informed decision support, while being able to deal with large-scale, interdependent complex infrastructure considering probabilistic seismic hazard scenarios

    Collaborative knowledge as a service applied to the disaster management domain

    Get PDF
    Cloud computing offers services which promise to meet continuously increasing computing demands by using a large number of networked resources. However, data heterogeneity remains a major hurdle for data interoperability and data integration. In this context, a Knowledge as a Service (KaaS) approach has been proposed with the aim of generating knowledge from heterogeneous data and making it available as a service. In this paper, a Collaborative Knowledge as a Service (CKaaS) architecture is proposed, with the objective of satisfying consumer knowledge needs by integrating disparate cloud knowledge through collaboration among distributed KaaS entities. The NIST cloud computing reference architecture is extended by adding a KaaS layer that integrates diverse sources of data stored in a cloud environment. CKaaS implementation is domain-specific; therefore, this paper presents its application to the disaster management domain. A use case demonstrates collaboration of knowledge providers and shows how CKaaS operates with simulation models

    Network Interdependency Modeling for Risk Assessment on Built Infrastructure Systems

    Get PDF
    As modern infrastructures become more interconnected, the decision-making process becomes more difficult because of the increased complexity resulting from infrastructure interdependencies. Simulation and network modeling provide a way to understand system behavior as a result of interdependencies. One area within the asset management literature that is not well covered is infrastructure system decay and risks associated with that decay. This research presents an enhanced version of Haimes\u27 input-output inoperability model (IIM) in the analysis of built infrastructure systems. Previous applications of the IIM characterized infrastructure at the national level utilizing large economic databases. This study develops a three-phased approach that takes component level data stored within geographic information systems (GIS) to provide a metric for network interdependency across a municipal level infrastructure. A multi-layered approach is proposed which leverages the layered data structure of GIS. Furthermore, Monte Carlo simulation using stochastic decay estimates shows how infrastructure risk as a result of interdependency effects changes over time. Such an analysis provides insight to infrastructure asset managers on the impact of policy and strategy decision-making regarding the maintenance and management of their infrastructure systems

    Resilience of critical structures, infrastructure, and communities

    Get PDF
    In recent years, the concept of resilience has been introduced to the field of engineering as it relates to disaster mitigation and management. However, the built environment is only one element that supports community functionality. Maintaining community functionality during and after a disaster, defined as resilience, is influenced by multiple components. This report summarizes the research activities of the first two years of an ongoing collaboration between the Politecnico di Torino and the University of California, Berkeley, in the field of disaster resilience. Chapter 1 focuses on the economic dimension of disaster resilience with an application to the San Francisco Bay Area; Chapter 2 analyzes the option of using base-isolation systems to improve the resilience of hospitals and school buildings; Chapter 3 investigates the possibility to adopt discrete event simulation models and a meta-model to measure the resilience of the emergency department of a hospital; Chapter 4 applies the meta-model developed in Chapter 3 to the hospital network in the San Francisco Bay Area, showing the potential of the model for design purposes Chapter 5 uses a questionnaire combined with factorial analysis to evaluate the resilience of a hospital; Chapter 6 applies the concept of agent-based models to analyze the performance of socio-technical networks during an emergency. Two applications are shown: a museum and a train station; Chapter 7 defines restoration fragility functions as tools to measure uncertainties in the restoration process; and Chapter 8 focuses on modeling infrastructure interdependencies using temporal networks at different spatial scales
    • …
    corecore