224 research outputs found

    On the Complexity of Digraph Colourings and Vertex Arboricity

    Full text link
    It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result was later on extended by Feder et al. to prove that deciding whether a digraph has a circular pp-colouring is NP-complete for all rational p>1p>1. In this paper, we consider the complexity of corresponding decision problems for related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional dichromatic number and the circular vertex arboricity. We prove the following results: Deciding if the star dichromatic number of a digraph is at most pp is NP-complete for every rational p>1p>1. Deciding if the fractional dichromatic number of a digraph is at most pp is NP-complete for every p>1,p≠2p>1, p \neq 2. Deciding if the circular vertex arboricity of a graph is at most pp is NP-complete for every rational p>1p>1. To show these results, different techniques are required in each case. In order to prove the first result, we relate the star dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which might be of independent interest. We provide a classification of the computational complexities of the corresponding homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.Comment: 21 pages, 1 figur

    Equitable partition of graphs into induced forests

    Full text link
    An equitable partition of a graph GG is a partition of the vertex-set of GG such that the sizes of any two parts differ by at most one. We show that every graph with an acyclic coloring with at most kk colors can be equitably partitioned into k−1k-1 induced forests. We also prove that for any integers d≥1d\ge 1 and k≥3d−1k\ge 3^{d-1}, any dd-degenerate graph can be equitably partitioned into kk induced forests. Each of these results implies the existence of a constant cc such that for any k≥ck \ge c, any planar graph has an equitable partition into kk induced forests. This was conjectured by Wu, Zhang, and Li in 2013.Comment: 4 pages, final versio

    Graph Treewidth and Geometric Thickness Parameters

    Full text link
    Consider a drawing of a graph GG in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of GG, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth kk, the maximum thickness and the maximum geometric thickness both equal ⌈k/2⌉\lceil{k/2}\rceil. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth kk, the maximum book thickness equals kk if k≤2k \leq 2 and equals k+1k+1 if k≥3k \geq 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in Computer Science 3843:129-140, Springer, 2006. The full version was published in Discrete & Computational Geometry 37(4):641-670, 2007. That version contained a false conjecture, which is corrected on page 26 of this versio

    Three ways to cover a graph

    Full text link
    We consider the problem of covering an input graph HH with graphs from a fixed covering class GG. The classical covering number of HH with respect to GG is the minimum number of graphs from GG needed to cover the edges of HH without covering non-edges of HH. We introduce a unifying notion of three covering parameters with respect to GG, two of which are novel concepts only considered in special cases before: the local and the folded covering number. Each parameter measures "how far'' HH is from GG in a different way. Whereas the folded covering number has been investigated thoroughly for some covering classes, e.g., interval graphs and planar graphs, the local covering number has received little attention. We provide new bounds on each covering number with respect to the following covering classes: linear forests, star forests, caterpillar forests, and interval graphs. The classical graph parameters that result this way are interval number, track number, linear arboricity, star arboricity, and caterpillar arboricity. As input graphs we consider graphs of bounded degeneracy, bounded degree, bounded tree-width or bounded simple tree-width, as well as outerplanar, planar bipartite, and planar graphs. For several pairs of an input class and a covering class we determine exactly the maximum ordinary, local, and folded covering number of an input graph with respect to that covering class.Comment: 20 pages, 4 figure
    • …
    corecore