134 research outputs found

    Self-Supervised and Controlled Multi-Document Opinion Summarization

    Full text link
    We address the problem of unsupervised abstractive summarization of collections of user generated reviews with self-supervision and control. We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents. This setting makes training simpler than previous approaches by relying only on standard log-likelihood loss. We address the problem of hallucinations through the use of control codes, to steer the generation towards more coherent and relevant summaries.Finally, we extend the Transformer architecture to allow for multiple reviews as input. Our benchmarks on two datasets against graph-based and recent neural abstractive unsupervised models show that our proposed method generates summaries with a superior quality and relevance.This is confirmed in our human evaluation which focuses explicitly on the faithfulness of generated summaries We also provide an ablation study, which shows the importance of the control setup in controlling hallucinations and achieve high sentiment and topic alignment of the summaries with the input reviews.Comment: 18 pages including 5 pages appendi

    Macro-micro approach for mining public sociopolitical opinion from social media

    Get PDF
    During the past decade, we have witnessed the emergence of social media, which has prominence as a means for the general public to exchange opinions towards a broad range of topics. Furthermore, its social and temporal dimensions make it a rich resource for policy makers and organisations to understand public opinion. In this thesis, we present our research in understanding public opinion on Twitter along three dimensions: sentiment, topics and summary. In the first line of our work, we study how to classify public sentiment on Twitter. We focus on the task of multi-target-specific sentiment recognition on Twitter, and propose an approach which utilises the syntactic information from parse-tree in conjunction with the left-right context of the target. We show the state-of-the-art performance on two datasets including a multi-target Twitter corpus on UK elections which we make public available for the research community. Additionally we also conduct two preliminary studies including cross-domain emotion classification on discourse around arts and cultural experiences, and social spam detection to improve the signal-to-noise ratio of our sentiment corpus. Our second line of work focuses on automatic topical clustering of tweets. Our aim is to group tweets into a number of clusters, with each cluster representing a meaningful topic, story, event or a reason behind a particular choice of sentiment. We explore various ways of tackling this challenge and propose a two-stage hierarchical topic modelling system that is efficient and effective in achieving our goal. Lastly, for our third line of work, we study the task of summarising tweets on common topics, with the goal to provide informative summaries for real-world events/stories or explanation underlying the sentiment expressed towards an issue/entity. As most existing tweet summarisation approaches rely on extractive methods, we propose to apply state-of-the-art neural abstractive summarisation model for tweets. We also tackle the challenge of cross-medium supervised summarisation with no target-medium training resources. To the best of our knowledge, there is no existing work on studying neural abstractive summarisation on tweets. In addition, we present a system for providing interactive visualisation of topic-entity sentiments and the corresponding summaries in chronological order. Throughout our work presented in this thesis, we conduct experiments to evaluate and verify the effectiveness of our proposed models, comparing to relevant baseline methods. Most of our evaluations are quantitative, however, we do perform qualitative analyses where it is appropriate. This thesis provides insights and findings that can be used for better understanding public opinion in social media

    Text Summarization Across High and Low-Resource Settings

    Get PDF
    Natural language processing aims to build automated systems that can both understand and generate natural language textual data. As the amount of textual data available online has increased exponentially, so has the need for intelligence systems to comprehend and present it to the world. As a result, automatic text summarization, the process by which a text\u27s salient content is automatically distilled into a concise form, has become a necessary tool. Automatic text summarization approaches and applications vary based on the input summarized, which may constitute single or multiple documents of different genres. Furthermore, the desired output style may consist of a sentence or sub-sentential units chosen directly from the input in extractive summarization or a fusion and paraphrase of the input document in abstractive summarization. Despite differences in the above use-cases, specific themes, such as the role of large-scale data for training these models, the application of summarization models in real-world scenarios, and the need for adequately evaluating and comparing summaries, are common across these settings. This dissertation presents novel data and modeling techniques for deep neural network-based summarization models trained across high-resource (thousands of supervised training examples) and low-resource (zero to hundreds of supervised training examples) data settings and a comprehensive evaluation of the model and metric progress in the field. We examine both Recurrent Neural Network (RNN)-based and Transformer-based models to extract and generate summaries from the input. To facilitate the training of large-scale networks, we introduce datasets applicable for multi-document summarization (MDS) for pedagogical applications and for news summarization. While the high-resource settings allow models to advance state-of-the-art performance, the failure of such models to adapt to settings outside of that in which it was initially trained requires smarter use of labeled data and motivates work in low-resource summarization. To this end, we propose unsupervised learning techniques for both extractive summarization in question answering, abstractive summarization on distantly-supervised data for summarization of community question answering forums, and abstractive zero and few-shot summarization across several domains. To measure the progress made along these axes, we revisit the evaluation of current summarization models. In particular, this dissertation addresses the following research objectives: 1) High-resource Summarization. We introduce datasets for multi-document summarization, focusing on pedagogical applications for NLP, news summarization, and Wikipedia topic summarization. Large-scale datasets allow models to achieve state-of-the-art performance on these tasks compared to prior modeling techniques, and we introduce a novel model to reduce redundancy. However, we also examine how models trained on these large-scale datasets fare when applied to new settings, showing the need for more generalizable models. 2) Low-resource Summarization. While high-resource summarization improves model performance, for practical applications, data-efficient models are necessary. We propose a pipeline for creating synthetic training data for training extractive question-answering models, a form of query-based extractive summarization with short-phrase summaries. In other work, we propose an automatic pipeline for training a multi-document summarizer in answer summarization on community question-answering forums without labeled data. Finally, we push the boundaries of abstractive summarization model performance when little or no training data is available across several domains. 3) Automatic Summarization Evaluation. To understand the extent of progress made across recent modeling techniques and better understand the current evaluation protocols, we examine the current metrics used to compare summarization output quality across 12 metrics across 23 deep neural network models and propose better-motivated summarization evaluation guidelines as well as point to open problems in summarization evaluation

    Guidance in Radiology Report Summarization: An Empirical Evaluation and Error Analysis

    Full text link
    Automatically summarizing radiology reports into a concise impression can reduce the manual burden of clinicians and improve the consistency of reporting. Previous work aimed to enhance content selection and factuality through guided abstractive summarization. However, two key issues persist. First, current methods heavily rely on domain-specific resources to extract the guidance signal, limiting their transferability to domains and languages where those resources are unavailable. Second, while automatic metrics like ROUGE show progress, we lack a good understanding of the errors and failure modes in this task. To bridge these gaps, we first propose a domain-agnostic guidance signal in form of variable-length extractive summaries. Our empirical results on two English benchmarks demonstrate that this guidance signal improves upon unguided summarization while being competitive with domain-specific methods. Additionally, we run an expert evaluation of four systems according to a taxonomy of 11 fine-grained errors. We find that the most pressing differences between automatic summaries and those of radiologists relate to content selection including omissions (up to 52%) and additions (up to 57%). We hypothesize that latent reporting factors and corpus-level inconsistencies may limit models to reliably learn content selection from the available data, presenting promising directions for future work.Comment: Accepted at INLG202

    PSP: Pre-trained Soft Prompts for Few-Shot Abstractive Summarization

    Full text link
    Few-shot abstractive summarization has become a challenging task in natural language generation. To support it, we designed a novel soft prompts architecture coupled with a prompt pre-training plus fine-tuning paradigm that is effective and tunes only extremely light parameters. The soft prompts include continuous input embeddings across an encoder and a decoder to fit the structure of the generation models. Importantly, a novel inner-prompt placed in the text is introduced to capture document-level information. The aim is to devote attention to understanding the document that better prompts the model to generate document-related content. The first step in the summarization procedure is to conduct prompt pre-training with self-supervised pseudo-data. This teaches the model basic summarizing capabilities. The model is then fine-tuned with few-shot examples. Experimental results on the CNN/DailyMail and XSum datasets show that our method, with only 0.1% of the parameters, outperforms full-model tuning where all model parameters are tuned. It also surpasses Prompt Tuning by a large margin and delivers competitive results against Prefix-Tuning with 3% of the parameters.Comment: 12 page

    Bridging the Gap Between Retrieval and Summarization

    Get PDF
    Information Retrieval is, at its core, a field focused on providing information to users to fulfill an information need. One of the most common use cases of Information Retrieval is document-level retrieval, which seeks to provide a collection of documents to the user that addresses their needs. In contrast to this, single document retrieval seeks to instead provide the user with a single document comprised of all required information. We seek to extend single document retrieval to single document generation, in which we use multiple source documents to create a new document which directly addresses the information need
    • …
    corecore