441 research outputs found

    A pilot study using tactile cueing for gait rehabilitation following stroke

    Get PDF
    Recovery of walking function is a vital goal of post-stroke rehabilitation. Cueing using audio metronomes has been shown to improve gait, but can be impractical when interacting with others, particularly outdoors where awareness of vehicles and bicycles is essential. Audio is also unsuitable in environments with high background noise, or for those with a hearing impairment. If successful, lightweight portable tactile cueing has the potential to take the benefits of cueing out of the laboratory and into everyday life. The Haptic Bracelets are lightweight wireless devices containing a computer, accelerometers and low-latency vibrotactiles with a wide dynamic range. In this paper we review gait rehabilitation problems and existing solutions, and present an early pilot in which the Haptic Bracelets were applied to post-stroke gait rehabilitation. Tactile cueing during walking was well received in the pilot, and analysis of motion capture data showed immediate improvements in gait

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy

    Effects of sensory cueing in virtual motor rehabilitation. A review.

    Get PDF
    Objectives To critically identify studies that evaluate the effects of cueing in virtual motor rehabilitation in patients having different neurological disorders and to make recommendations for future studies. Methods Data from MEDLINE®, IEEExplore, Science Direct, Cochrane library and Web of Science was searched until February 2015. We included studies that investigate the effects of cueing in virtual motor rehabilitation related to interventions for upper or lower extremities using auditory, visual, and tactile cues on motor performance in non-immersive, semi-immersive, or fully immersive virtual environments. These studies compared virtual cueing with an alternative or no intervention. Results Ten studies with a total number of 153 patients were included in the review. All of them refer to the impact of cueing in virtual motor rehabilitation, regardless of the pathological condition. After selecting the articles, the following variables were extracted: year of publication, sample size, study design, type of cueing, intervention procedures, outcome measures, and main findings. The outcome evaluation was done at baseline and end of the treatment in most of the studies. All of studies except one showed improvements in some or all outcomes after intervention, or, in some cases, in favor of the virtual rehabilitation group compared to the control group. Conclusions Virtual cueing seems to be a promising approach to improve motor learning, providing a channel for non-pharmacological therapeutic intervention in different neurological disorders. However, further studies using larger and more homogeneous groups of patients are required to confirm these findings

    Questioning Classic Patient Classification Techniques in Gait Rehabilitation: Insights from Wearable Haptic Technology

    Get PDF
    Classifying stroke survivors based on their walking abilities is an important part of the gait rehabilitation process. It can act as powerful indicator of function and prognosis in both the early days after a stroke and long after a survivor receives rehabilitation. This classification often relies solely on walking speed; a quick and easy measure, with only a stopwatch needed. However, walking speed may not be the most accurate way of judging individual’s walking ability. Advances in technology mean we are now in a position where ubiquitous and wearable technologies can be used to elicit much richer measures to characterise gait. In this paper we present a case study from one of our studies, where within a homogenous group of stroke survivors (based on walking speed classification) important differences in individual results and the way they responded to rhythmic haptic cueing were identified during the piloting of a novel gait rehabilitation technique

    A blended user centred design study for wearable haptic gait rehabilitation following hemiparetic stroke

    Get PDF
    Restoring mobility and rehabilitation of gait are high priorities for post-stroke rehabilitation. Cueing using metronomic rhythmic sensory stimulation has been shown to improve gait, but most versions of this approach have used auditory and visual cues. In contrast, we developed a prototype wearable system for rhythmic cueing based on haptics, which was shown to be highly effective in an early pilot study. In this paper we describe a follow-up study with four stroke survivors to inform design, and to identify issues and requirements for such devices to be used in home-based or out-door settings. To this end, we present a blended user-centred design study of a wearable haptic gait rehabilitation system. This study draws on the combined views of physiotherapists, nurses, interaction designers and stroke survivors. Many of the findings were unanticipated, identifying issues outside the scope of initial designs, with important implications for future design and appropriate use
    • …
    corecore