478 research outputs found

    Piezoelectric/Triboelectric Nanogenerators for Biomedical Applications

    Get PDF
    Bodily movements can be used to harvest electrical energy via nanogenerators and thereby enable self-powered healthcare devices. In this chapter, first we summarize the requirements of nanogenerators for the applications in biomedical fields. Then, the current applications of nanogenerators in the biomedical field are introduced, including self-powered sensors for monitoring body activities; pacemakers; cochlear implants; stimulators for cells, tissues, and the brain; and degradable electronics. Remaining challenges to be solved in this field and future development directions are then discussed, such as increasing output performance, further miniaturization, encapsulation, and improving stability. Finally, future outlooks for nanogenerators in healthcare electronics are reviewed

    Applications of nanogenerators for biomedical engineering and healthcare systems

    Get PDF
    The dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment. However, conventional biomedical and healthcare devices have shortcomings such as short service life, large equipment size, and high potential safety hazards. Indeed, the power supply for conventional implantable device remains predominantly batteries. The emerging nanogenerators, which harvest micro/nanomechanical energy and thermal energy from human beings and convert into electrical energy, provide an ideal solution for self‐powering of biomedical devices. The combination of nanogenerators and biomedicine has been accelerating the development of self‐powered biomedical equipment. This article first introduces the operating principle of nanogenerators and then reviews the progress of nanogenerators in biomedical applications, including power supply, smart sensing, and effective treatment. Besides, the microbial disinfection and biodegradation performances of nanogenerators have been updated. Next, the protection devices have been discussed such as face mask with air filtering function together with real‐time monitoring of human health from the respiration and heat emission. Besides, the nanogenerator devices have been categorized by the types of mechanical energy from human beings, such as the body movement, tissue and organ activities, energy from chemical reactions, and gravitational potential energy. Eventually, the challenges and future opportunities in the applications of nanogenerators are delivered in the conclusive remarks. The combination of nanogenerator and biomedicine have been accelerating the development of self‐powered biomedical devices, which show a bright future in biomedicine and healthcare such as smart sensing, and therapy
    • 

    corecore