6,958 research outputs found

    A Piezoelectric Device for Measurement and Power Harvesting Applications

    Get PDF
    Com o apoio RAADRI.With the fast growth of wireless communications between nodes/sensor units, devices installed in remote places require power energy supply solutions to assure their functionally and data communication capabilities. For these applications energy harvesting takes place as a good solution, to increase the availability of energy, in opposition to the conventional systems of energy supply. Regenerative energy sources like thermoelectric, magnetic, piezoelectric, and/or renewable sources such as photovoltaic, wind, among others, allowed the development of different powering solutions for sensor units. The purpose of this work is to characterize a piezoelectric device to measure and capture mechanical vibrations from equipments, structures and piping vibrations, as well as from other sources. The study is carried out taking into account the power supply capabilities of piezoelectric devices as a function of the amplitude and frequency of the vibration stimulus, as well as, the electrical characteristics of the load circuit

    Investigation of electrical properties for cantilever-based piezoelectric energy harvester

    Get PDF
    In the present era, the renewable sources of energy, e.g., piezoelectric materials are in great demand. They play a vital role in the field of micro-electromechanical systems, e.g., sensors and actuators. The cantilever-based piezoelectric energy harvesters are very popular because of their high performance and utilization. In this research-work, an energy harvester model based on a cantilever beam with bimorph PZT-5A, having a substrate layer of structural steel, was presented. The proposed energy scavenging system, designed in COMSOL Multiphysics, was applied to analyze the electrical output as a function of excitation frequencies, load resistances and accelerations. Analytical modeling was employed to measure the output voltage and power under pre-defined conditions of acceleration and load resistance. Experimentation was also performed to determine the relationship between independent and output parameters. Energy harvester is capable of producing the maximum power of 1.16 mW at a resonant frequency of 71 Hz under 1g acceleration, having load resistance of 12 k Omega. It was observed that acceleration and output power are directly proportional to each other. Moreover, the investigation conveys that the experimental results are in good agreement with the numerical results. The maximum error obtained between the experimental and numerical investigation was found to equal 4.3%

    Model and design of a double frequency piezoelectric resonator

    Get PDF
    A novel design of a multifrequency mechanical resonator with piezoelectric materials for energy harvesting is presented. The electromechanical response is described by a finite element model, which predicts the output voltage and the generated powe

    Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation

    Get PDF
    The modern drive towards mobility and wireless devices is motivating intensive research in energy harvesting technologies. To reduce the battery burden on people, we propose the adoption of a frequency up-conversion strategy for a new piezoelectric wearable energy harvester. Frequency up-conversion increases efficiency because the piezoelectric devices are permitted to vibrate at resonance even if the input excitation occurs at much lower frequency. Mechanical plucking-based frequency up-conversion is obtained by deflecting the piezoelectric bimorph via a plectrum, then rapidly releasing it so that it can vibrate unhindered; during the following oscillatory cycles, part of the mechanical energy is converted into electrical energy. In order to guide the design of such a harvester, we have modelled with finite element methods the response and power generation of a piezoelectric bimorph while it is plucked. The model permits the analysis of the effects of the speed of deflection as well as the prediction of the energy produced and its dependence on the electrical load. An experimental rig has been set up to observe the response of the bimorph in the harvester. A PZT-5H bimorph was used for the experiments. Measurements of tip velocity, voltage output and energy dissipated across a resistor are reported. Comparisons of the experimental results with the model predictions are very successful and prove the validity of the model

    Power harvesting in a helicopter lag damper

    Get PDF
    In this paper a new power harvesting application is developed and simulated. Power harvesting is chosen within the European Clean Sky project as a solution to powering in-blade health monitoring systems as opposed to installing an elaborate electrical infrastructure to draw power from and transmit signals to the helicopter body. Local generation of power will allow for a ‘plug and play’ rotor blade and signals may be logged or transmitted wirelessly.\ud The lag damper is chosen to be modified as it provides a well defined loading due to the re-gressive damping characteristic. A piezo electric stack is installed inside the damper rod, effec-tively coupled in series with the damper. Due to the well defined peak force generated in the damper the stack geometry requires a very limited margin of safety. Typically the stack geometry must be chosen to prevent excessive voltage build-up as opposed to mechanical overload.\ud Development and simulation of the model is described starting with a simplified blade and piezo element model. Presuming specific flight conditions transient simulations are conducted using various power harvesting circuits and their performance is evaluated. The best performing circuit is further optimized to increase the specific power output. Optimization of the electrical and mechanical domains must be done simultaneously due to the high electro-mechanical cou-pling of the piezo stack. The non-linear electrical properties of the piezo material, most notably the capacitance which may have a large influence, are not yet considered in this study.\ud The power harvesting lag damper provides sufficient power for extensive health monitoring systems within the blade while retaining the functionality and safety of the standard component. For the 8.15m blade radius and 130 knots flight speed under consideration simulations show 7.5 watts of power is generated from a single damper

    Parylene-based electret power generators

    Get PDF
    n electret power generator is developed using a new electret made of a charged parylene HT® thin-film polymer. Here, parylene HT® is a room-temperature chemical-vapor-deposited thin-film polymer that is MEMS and CMOS compatible. With corona charge implantation, the surface charge density of parylene HT® is measured as high as 3.69 mC m^−2. Moreover, it is found that, with annealing at 400 °C for 1 h before charge implantation, both the long-term stability and the high-temperature reliability of the electret are improved. For the generator, a new design of the stator/rotor is also developed. The new micro electret generator does not require any sophisticated gap-controlling structure such as tethers. With the conformal coating capability of parylene HT®, it is also feasible to have the electret on the rotors, which is made of either a piece of metal or an insulator. The maximum power output, 17.98 µW, is obtained at 50 Hz with an external load of 80 MΩ. For low frequencies, the generator can harvest 7.7 µW at 10 Hz and 8.23 µW at 20 Hz

    Energy harvesting from vehicular traffic over speed bumps: A review

    Get PDF
    Energy used by vehicles to slow down in areas of limited speed is wasted. A traffic energy-harvesting device (TEHD) is capable of harvesting vehicle energy when passing over a speed bump. This paper presents a classification of the different technologies used in the existing TEHDs. Moreover, an estimation of the energy that could be harvested with the different technologies and their cost has been elaborated. The energy recovered with these devices could be used for marking and lighting of roads in urban areas, making transportation infrastructures more sustainable and environmentally friendly

    Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    No full text
    This paper reviews possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, non-linear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This paper presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach

    Maximum performance of piezoelectric energy harvesters when coupled to interface circuits

    Get PDF
    This paper presents a complete optimization of a piezoelectric vibration energy harvesting system, including a piezoelectric transducer, a power conditioning circuit with full semiconductor device models, a battery and passive components. To the authors awareness, this is the first time and all of these elements have been integrated into one optimization. The optimization is done within a framework, which models the combined mechanical and electrical elements of a complete piezoelectric vibration energy harvesting system. To realize the optimization, an optimal electrical damping is achieved using a single-supply pre-biasing circuit with a buck converter to charge the battery. The model is implemented in MATLAB and verified in SPICE. The results of the full system model are used to find the mechanical and electrical system parameters required to maximize the power output. The model, therefore, yields the upper bound of the output power and the system effectiveness of complete piezoelectric energy harvesting systems and, hence, provides both a benchmark for assessing the effectiveness of existing harvesters and a framework to design the optimized harvesters. It is also shown that the increased acceleration does not always result in increased power generation as a larger damping force is required, forcing a geometry change of the harvester to avoid exceeding the piezoelectric breakdown voltage. Similarly, increasing available volume may not result in the increased power generation because of the difficulty of resonating the beam at certain frequencies whilst utilizing the entire volume. A maximum system effectiveness of 48% is shown to be achievable at 100 Hz for a 3.38-cm3 generator
    corecore