142 research outputs found

    Land Surface Temperature Product Validation Best Practice Protocol Version 1.0 - October, 2017

    Get PDF
    The Global Climate Observing System (GCOS) has specified the need to systematically generate andvalidate Land Surface Temperature (LST) products. This document provides recommendations on goodpractices for the validation of LST products. Internationally accepted definitions of LST, emissivity andassociated quantities are provided to ensure the compatibility across products and reference data sets. Asurvey of current validation capabilities indicates that progress is being made in terms of up-scaling and insitu measurement methods, but there is insufficient standardization with respect to performing andreporting statistically robust comparisons.Four LST validation approaches are identified: (1) Ground-based validation, which involvescomparisons with LST obtained from ground-based radiance measurements; (2) Scene-based intercomparisonof current satellite LST products with a heritage LST products; (3) Radiance-based validation,which is based on radiative transfer calculations for known atmospheric profiles and land surface emissivity;(4) Time series comparisons, which are particularly useful for detecting problems that can occur during aninstrument's life, e.g. calibration drift or unrealistic outliers due to undetected clouds. Finally, the need foran open access facility for performing LST product validation as well as accessing reference LST datasets isidentified

    Satellite-based Cloud Remote Sensing: Fast Radiative Transfer Modeling and Inter-Comparison of Single-/Multi-Layer Cloud Retrievals with VIIRS

    Get PDF
    This dissertation consists of three parts, each of them, progressively, contributing to the problem of great importance that satellite-based remote sensing of clouds. In the first section, we develop a fast radiative transfer model specialized for Visible Infrared Imaging Radiometer Suite (VIIRS), based on the band-average technique. VIIRS, is a passive sensor flying aboard the NOAA’s Suomi National Polar-orbiting Partnership (NPP) spacecraft. This model successfully simulates VIIRS solar and infrared bands, in both moderate (M-bands) and imagery (I-bands) spatial resolutions. Besides, the model is two orders of magnitude faster than Line-by-line & discrete ordinate transfer (DISORT) method with a great accuracy. The second and third parts are going to investigate the retrieval of single-/multi- layer cloud optical properties, especially, cloud optical thickness (τ) and cloud effective particle size (De) with different methods. By presenting the comparison between results derived from VIIRS measurements and benchmark products, potential applications of Bayesian and OE retrieval methods for cloud property retrieval are discussed. It has proved that Bayesian method is more suitable for single-layer scenarios with fewer variables with fast speed, while Optimal Estimation method is superior to Bayesian method for more complicated multi-layer scenarios

    Validation of Sentinel-3 SLSTR Land Surface Temperature Retrieved by the Operational Product and Comparison with Explicitly Emissivity-Dependent Algorithms

    Get PDF
    Land surface temperature (LST) is an essential climate variable (ECV) for monitoring the Earth climate system. To ensure accurate retrieval from satellite data, it is important to validate satellite derived LSTs and ensure that they are within the required accuracy and precision thresholds. An emissivity-dependent split-window algorithm with viewing angle dependence and two dual-angle algorithms are proposed for the Sentinel-3 SLSTR sensor. Furthermore, these algorithms are validated together with the Sentinel-3 SLSTR operational LST product as well as several emissivity-dependent split-window algorithms with in-situ data from a rice paddy site. The LST retrieval algorithms were validated over three different land covers: flooded soil, bare soil, and full vegetation cover. Ground measurements were performed with a wide band thermal infrared radiometer at a permanent station. The coefficients of the proposed split-window algorithm were estimated using the Cloudless Land Atmosphere Radiosounding (CLAR) database: for the three surface types an overall systematic uncertainty (median) of −0.4 K and a precision (robust standard deviation) 1.1 K were obtained. For the Sentinel-3A SLSTR operational LST product, a systematic uncertainty of 1.3 K and a precision of 1.3 K were obtained. A first evaluation of the Sentinel-3B SLSTR operational LST product was also performed: systematic uncertainty was 1.5 K and precision 1.2 K. The results obtained over the three land covers found at the rice paddy site show that the emissivity-dependent split-window algorithms, i.e., the ones proposed here as well as previously proposed algorithms without angular dependence, provide more accurate and precise LSTs than the current version of the operational SLSTR product

    Quality assessment of S-NPP VIIRS land surface temperature product

    Get PDF
    The VIIRS Land Surface Temperature (LST) Environmental Data Record (EDR) has reached validated (V1 stage) maturity in December 2014. This study compares VIIRS v1 LST with the ground in situ observations and with heritage LST product from MODIS Aqua and AATSR. Comparisons against U.S. SURFRAD ground observations indicate a similar accuracy among VIIRS, MODIS and AATSR LST, in which VIIRS LST presents an overall accuracy of −0.41 K and precision of 2.35 K. The result over arid regions in Africa suggests that VIIRS and MODIS underestimate the LST about 1.57 K and 2.97 K, respectively. The cross comparison indicates an overall close LST estimation between VIIRS and MODIS. In addition, a statistical method is used to quantify the VIIRS LST retrieval uncertainty taking into account the uncertainty from the surface type input. Some issues have been found as follows: (1) Cloud contamination, particularly the cloud detection error over a snow/ice surface, shows significant impacts on LST validation; (2) Performance of the VIIRS LST algorithm is strongly dependent on a correct classification of the surface type; (3) The VIIRS LST quality can be degraded when significant brightness temperature difference between the two split window channels is observed; (4) Surface type dependent algorithm exhibits deficiency in correcting the large emissivity variations within a surface type

    Impact of Blackbody Warm-Up Cool-Down Cycle on the Calibration of Aqua MODIS and S-NPP VIIRS Thermal Emissive Bands

    Get PDF
    This paper evaluates the calibration quality during the blackbody (BB) warm-up cool-down cycle for thermal emissive bands onboard Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS). This evaluation utilizes data from Aqua MODIS Collection 6 Level-1B products and VIIRS Sensor Data Records in 6-min granule format provided by the NASA Land Science Investigator-led Processing System. Nearly simultaneous hyperspectral measurements from the Aqua Atmospheric Infrared Sounder (AIRS) and the S-NPP Cross-track Infrared Sounder (CrIS) are used as references for MODIS and VIIRS, respectively. Each AIRS footprint of 13.5 km is co-located with multiple MODIS pixels while each CrIS field of view of 14 km is co-located with multiple VIIRS pixels. The corresponding AIRS-simulated MODIS and CrIS-simulated VIIRS radiances are derived by convolutions based on sensor-dependent relative spectral response functions. In this paper, the analysis mainly focuses on the bands that are used in sea surface temperature products. The results show that there is virtually no impact for MODIS bands 22 and 23 and bands 31 and 32 for a BB temperature below 290 K; however, when the BB temperature increases above 290 K, the impact is up to 0.3 K for bands 22 and 23 and 0.05 K for bands 31 and 32, respectively. For VIIRS, BB temperature-dependent drifts are observed in M15 and M16, which can reach 0.15 and 0.1 K, respectively, over the operational BB temperature range and the VIIRS brightness temperature range

    NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms

    Full text link
    The 2017–2027 National Academies' Decadal Survey, Thriving on Our Changing Planet, recommended Surface Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 ÎŒm; TIR: 8–12 ÎŒm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists

    Land surface temperature and evapotranspiration estimation in the Amazon evergreen forests using remote sensing data

    Get PDF
    Amazonian tropical forests play a significant role in global water, carbon and energy cycles. Considering the relevance of this biome and the climate change projections which predict a hotter and drier climate for the region, the monitoring of the vegetation status of these forests becomes of significant importance. In this context, vegetation temperature and evapotranspiration (ET) can be considered as key variables. Vegetation temperature is directly linked with plant physiology. In addition, some studies have shown the existing relationship between this variable and the CO2 absorption capacity and biomass loss of these forests. Evapotranspiration resulting from the combined processes of transpiration and evaporation links the terrestrial water, carbon and surface energy exchanges of these forests. How this variable will response to the changing climate is critical to understand the stability of these forests. Satellite remote sensing is presented as a feasible means in order to provide accurate spatially-distributed estimates of these variables. Nevertheless, the use of satellite passive imagery for analysing this region still has some limitations being of special importance the proper cloud masking of the satellite data which becomes a difficult task due to the continuous cloud cover of the region. Under the light of the aforementioned issues, the present doctoral thesis is aimed at estimating the land surface temperature and evapotranspiration of the Amazonian tropical forests using remote sensing data. In addition, as cloud screening of satellite imagery is a critical step in the processing chain of the previous magnitudes and becomes of special importance for the study region this topic has also been included in this thesis. We have mainly focused on the use of data from the Moderate Resolution Imaging Spectroradiometer (MODIS) which is amongst major tools for studying this region. Regarding the cloud detection topic, the potential of supervised learning algorithms for cloud masking was studied in order to overcome the cloud contamination issue of the current satellite products. Models considered were: Gaussian NaĂŻve Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forests (RF), Support Vector Machine (SVM) and Multilayer Perceptron (MLP). These algorithms are able to provide a continuous measure of cloud masking uncertainty (i.e. a probability estimate of each pixel belonging to clear and cloudy class) and therefore can be used under the light of a probabilistic approach. Reference dataset (a priori knowledge) requirement was satisfied by considering the collocation of Cloud Profiling Radar (CPR) and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observations with MODIS sensor. Model performance was tested using three independent datasets: 1) collocated CPR/CALIOP and MODIS data, 2) MODIS manually classified images and 3) in-situ ground data. For the case of satellite image and in-situ testing, results were additionally compared to current operative MYD35 (version 6.1) and Multi-Angle Implementation of the Atmospheric Correction (MAIAC) cloud masking algorithms. These results showed that machine learning algorithms were able to improve MODIS operative cloud masking performance over the region. MYD35 and MAIAC tended to underestimate and overestimate the cloud cover, respectively. Amongst the models considered, LDA stood out as the best candidate because of its maximum accuracy (difference in Kappa coefficient of 0.293/0.155 (MYD35 /MAIAC respectively)) and minimum computational associated. Regarding the estimation of land surface temperature (LST), the aim of this study was to generate specific LST products for the Amazonian tropical forests. This goal was accomplished by using a tuned split-window (SW) equation. Validation of the LST products was obtained by direct comparison between LST estimates as derived from the algorithms and two types of different LST observations: in-situ LST (T-based validation) and LST derived from the R-based method. In addition, LST algorithms were validated using independent simulated data. In-situ LST was retrieved from two infrared radiometers (SI-100 and IR-120) and a CNR4 net radiometer, situated at Tambopata test site (12.832 S, 62.282 W) in the Peruvian Amazon. Apart from this, current satellite LST products were also validated and compared to the tuned split-window. Although we have mainly focus on MODIS LST products which derive from three different LST algorithms: split-window, day and night (DN) and Temperature Emissivity Separation (TES), we have also considered the inclusion of the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor. In addition, a first assessment of the Sea and Land Surface Temperature Radiometer (SLSTR) is presented. Validation was performed separately for daytime and nighttime conditions. For MODIS sensor, current LST products showed Root Mean Square Errors (RMSE) in LST estimations between 2 K and 3K for daytime and 1 K and 2 K for nighttime. In the best case (with a restrictive cloud screening) RMSE errors decrease to values below 2K and around 1 K, respectively. The proposed LST showed RMSE values of 1K to approximately 2 K and 0.7-1.5 K (below 1.5 K and below 1 K in the best case) for daytime and nighttime conditions, thus improving current LST MODIS products. This is also in agreement with the R-based validation results, which show a RMSE reduction of 0.7 K to 1.7 K in comparison to MODIS LST products. For the case of VIIRS sensor daytime conditions, VIIRS-TES algorithm provides the best performance with a difference of 0.2 K to around 0.3 K in RMSE regarding the split window algorithm (in the best case it reduces to 0.2 K). All VIIRS LST products considered have RMSE values between 2 K and 3K. At nighttime, however VIIRS-TES is not able to outperform the SW algorithm. A difference of 0.7 K to 0.8 K in RMSE is obtained. Contrary to MODIS and the SW LST products, VIIRS-TES tends to overestimate in-situ LST values. Regarding SLSTR sensor, the L2 product provides a better agreement with in-situ observations than the proposed algorithm (daytime difference in RMSE around 0.6 K and up 0.07 K at nighttime). In the estimation of the ET, we focused on the evaluation of four commonly used remote-sensing based ET models. These were: i) Priestley-Taylor Jet Propulsion Laboratory (PT-JPL), ii) Penman-Monteith MODIS operative parametrization (PM-Mu), iii) Surface Energy Balance System (SEBS), and iv) Satellite Application Facility on Land Surface Analysis (LSASAF). These models were forced using remote-sensing data from MODIS and two ancillary meteorological data sources: i) in-situ data extracted from Large-Scale Biosphere-Atmosphere Experiment (LBA) stations (scenario I), and ii) three reanalysis datasets (scenario II), including Modern-Era Retrospective analysis for Research and Application (MERRA-2), European Centre for Medium-range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERA-Interim), and Global Land Assimilation System (GLDAS-2.1). Performance of algorithms under the two scenarios was validated using in-situ eddy-covariance measurements. For scenario I, PT-JPL provided the best agreement with in-situ ET observations (RMSE = 0.55 mm/day, R = 0.88). Neglecting water canopy evaporation resulted in an underestimation of ET measurements for LSASAF. SEBS performance was similar to that of PT-JPL, nevertheless SEBS estimates were limited by the continuous cloud cover of the region. A physically-based ET gap-filling method was used in order to alleviate this issue. PM-Mu also with a similar performance to PT-JPL tended to overestimate in-situ ET observations. For scenario II, quality assessment of reanalysis input data demonstrated that MERRA-2, ERA-Interim and GLDAS-2.1 contain biases that impact model performance. In particular, biases in radiation inputs were found the main responsible of the observed biases in ET estimates. For the region, MERRA-2 tends to overestimate daily net radiation and incoming solar radiation. ERA-Interim tends to underestimate both variables, and GLDAS-2.1 tends to overestimate daily radiation while underestimating incoming solar radiation. Discrepancies amongst these inputs resulted in large absolute deviations in spatial patterns (deviations greater than 500 mm/year) and temporal patterns

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research
    • 

    corecore