7,170 research outputs found

    Approaching the ground states of the random maximum two-satisfiability problem by a greedy single-spin flipping process

    Full text link
    In this brief report we explore the energy landscapes of two spin glass models using a greedy single-spin flipping process, {\tt Gmax}. The ground-state energy density of the random maximum two-satisfiability problem is efficiently approached by {\tt Gmax}. The achieved energy density e(t)e(t) decreases with the evolution time tt as e(t)e()=h(log10t)ze(t)-e(\infty)=h (\log_{10} t)^{-z} with a small prefactor hh and a scaling coefficient z>1z > 1, indicating an energy landscape with deep and rugged funnel-shape regions. For the ±J\pm J Viana-Bray spin glass model, however, the greedy single-spin dynamics quickly gets trapped to a local minimal region of the energy landscape.Comment: 5 pages with 4 figures included. Accepted for publication in Physical Review E as a brief repor

    Identifying Security-Critical Cyber-Physical Components in Industrial Control Systems

    Get PDF
    In recent years, Industrial Control Systems (ICS) have become an appealing target for cyber attacks, having massive destructive consequences. Security metrics are therefore essential to assess their security posture. In this paper, we present a novel ICS security metric based on AND/OR graphs that represent cyber-physical dependencies among network components. Our metric is able to efficiently identify sets of critical cyber-physical components, with minimal cost for an attacker, such that if compromised, the system would enter into a non-operational state. We address this problem by efficiently transforming the input AND/OR graph-based model into a weighted logical formula that is then used to build and solve a Weighted Partial MAX-SAT problem. Our tool, META4ICS, leverages state-of-the-art techniques from the field of logical satisfiability optimisation in order to achieve efficient computation times. Our experimental results indicate that the proposed security metric can efficiently scale to networks with thousands of nodes and be computed in seconds. In addition, we present a case study where we have used our system to analyse the security posture of a realistic water transport network. We discuss our findings on the plant as well as further security applications of our metric.Comment: Keywords: Security metrics, industrial control systems, cyber-physical systems, AND-OR graphs, MAX-SAT resolutio

    An exactly solvable random satisfiability problem

    Full text link
    We introduce a new model for the generation of random satisfiability problems. It is an extension of the hyper-SAT model of Ricci-Tersenghi, Weigt and Zecchina, which is a variant of the famous K-SAT model: it is extended to q-state variables and relates to a different choice of the statistical ensemble. The model has an exactly solvable statistic: the critical exponents and scaling functions of the SAT/UNSAT transition are calculable at zero temperature, with no need of replicas, also with exact finite-size corrections. We also introduce an exact duality of the model, and show an analogy of thermodynamic properties with the Random Energy Model of disordered spin systems theory. Relations with Error-Correcting Codes are also discussed.Comment: 31 pages, 1 figur

    A Satisfiability Modulo Theory Approach to Secure State Reconstruction in Differentially Flat Systems Under Sensor Attacks

    Get PDF
    We address the problem of estimating the state of a differentially flat system from measurements that may be corrupted by an adversarial attack. In cyber-physical systems, malicious attacks can directly compromise the system's sensors or manipulate the communication between sensors and controllers. We consider attacks that only corrupt a subset of sensor measurements. We show that the possibility of reconstructing the state under such attacks is characterized by a suitable generalization of the notion of s-sparse observability, previously introduced by some of the authors in the linear case. We also extend our previous work on the use of Satisfiability Modulo Theory solvers to estimate the state under sensor attacks to the context of differentially flat systems. The effectiveness of our approach is illustrated on the problem of controlling a quadrotor under sensor attacks.Comment: arXiv admin note: text overlap with arXiv:1412.432

    Reasoning about transfinite sequences

    Full text link
    We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω\omega-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability problem for the logics working on ωk\omega^k-sequences is EXPSPACE-complete when the integers are represented in binary, and PSPACE-complete with a unary representation. To do so, we substantially extend standard results about LTL by introducing a new class of succinct ordinal automata that can encode the interaction between the different quantitative temporal operators.Comment: 38 page

    Satisfiability, sequence niches, and molecular codes in cellular signaling

    Full text link
    Biological information processing as implemented by regulatory and signaling networks in living cells requires sufficient specificity of molecular interaction to distinguish signals from one another, but much of regulation and signaling involves somewhat fuzzy and promiscuous recognition of molecular sequences and structures, which can leave systems vulnerable to crosstalk. This paper examines a simple computational model of protein-protein interactions which reveals both a sharp onset of crosstalk and a fragmentation of the neutral network of viable solutions as more proteins compete for regions of sequence space, revealing intrinsic limits to reliable signaling in the face of promiscuity. These results suggest connections to both phase transitions in constraint satisfaction problems and coding theory bounds on the size of communication codes
    corecore