47 research outputs found

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Novel Physical Layer Authentication Techniques for Secure Wireless Communications

    Get PDF
    Due to the open nature of radio propagation, information security in wireless communications has been facing more challenges compared to its counterpart in wired networks. Authentication, defined as an important aspect of information security, is the process of verifying the identity of transmitters to prevent against spoofing attacks. Traditionally, secure wireless communications is achieved by relying solely upon higher layer cryptographic mechanisms. However, cryptographic approaches based on complex mathematical calculations are inefficient and vulnerable to various types of attacks. Recently, researchers have shown that the unique properties of wireless channels can be exploited for authentication enhancement by providing additional security protection against spoofing attacks. Motivated by the vulnerability of existing higher-layer security techniques and the security advantages provided by exploring the physical link properties, five novel physical layer authentication techniques to enhance the security performance of wireless systems are proposed. The first technique exploits the inherent properties of CIR to achieve robust channel-based authentication. The second and third techniques utilize a long-range channel predictor and additional multipath delay characteristics, respectively, to enhance the CIR-based authentication. The fourth technique exploits the advantages of AF cooperative relaying to improve traditional channel-based authentication. The last technique employs an embedded confidential signaling link to secure the legitimate transmissions in OFDM systems

    Wireless Sensor System for Recycling

    Get PDF
    The motivation of this thesis was to research and design a prototype model of a wireless sensor network application, to be used as an automated detection infrastructure in recycling environment. The initial idea was to measure the level of the surface in a recycling container and transmit the information through a wireless communication system. The prototype is an initial step for recycling companies for building an automated detection network. Background of the research strongly supports the accomplished prototype. Study includes description of wireless environment with its problems and challenges. It proceeds with consideration of suitable wireless standards and considers most convenient sensor methods for recycling environment. Eventually document presents the prototype combining the studied entities. As a result, the prototype has two main operating parts: the wireless communication network and sensors. The network was realized with ZigBee standard by using two radio chips as communication nodes. Second communication node is attached to a recycling container and combined with two ultrasound sensors. This node includes a soft-ware algorithm, which is polling the state of the sensors regularly and deciding if the container is full. The node proceeds to transmission of the information to other communication node. This node is connected to computer and will transmit the information to be used by the recycling organization.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    PERFORMANCE ANALYSIS OF DIFFERENT SCHEMES FOR TRANSMISSION OF WATERMARKED MEDICAL IMAGES OVER FADING CHANNELS

    Get PDF
    ABSTRACT Performance Analysis of Different Schemes for Transmission of Watermarked Medical images over Fading Channels Praveen Kumar Korrai In this thesis, we investigate different types of robust schemes for transmission of medical images with concealed patient information as a watermark. In these schemes, spatial domain digital watermarking technique is adapted to embed the patient information as a watermark into the lower order bits of the medical images to reduce the storage and transmission overheads. The watermark, which comprises text data, is encrypted to prevent unauthorized access of data. To enhance the robustness of the embedded information, the encrypted watermark is coded by concatenation of Reed Solomon (RS) and low density parity check (LDPC) codes. A robust scheme for transmission of watermarked images over impulsive noisy wireless channels is first proposed and its performance analyzed. In this scheme, the bursty wireless channel is simulated by adding impulse noise to the watermark embedded image. Furthermore, turbo channel coding is used to correct the transmission errors over impulsive noisy wireless channels. However, single input single output (SISO) channel capacity is not enough to provide modern wireless services such as data and multimedia messaging services. Further, it is not reliable due to multipath fading. To overcome these problems, a multiple-input multiple-output (MIMO) transmission scheme in which multiple antennas are used at both the transmitter and the receiver has emerged as one of the most significant technical breakthroughs in modern wireless communications. MIMO can improve the channel capacity and provide diversity gain. Hence, a scheme with a MIMO channel is proposed for the transmission of watermarked medical images over Rayleigh flat fading channels and its performance analyzed using MIMO maximum likelihood detector at the receiver. We present another scheme, namely, MIMO space frequency block coded OFDM (MIMO SFBC OFDM) in this thesis for transmission of watermarked medical images over Rayleigh fading channels to mitigate the detrimental effects due to frequency selective fading. The performance of this MIMO SFBC OFDM scheme is analyzed and compared with that of SISO-OFDM using minimum mean square error V-BLAST- based detection at the receiver. The efficacy of the different proposed schemes is illustrated through implementation results on watermarked medical images

    Optimal Power Allocation in MIMO wire-tap channels

    Get PDF
    Projecte Finl de Carrera fet en col.laboració amb Università La Sapienza di Roma.English: Study of a methodology that, without the use of cryptography, limits the possible "intelligence" present at the eavesdropper and increases the level of secrecy on a wireless environment using MIMO systems.Castellano: Estudio de una metodologia que, sin hacer uso de la criptografia, permite limitar la posible "inteligencia" del espia, con la finalidad de aumentar la confidencialidad en comunicacines wireless con sistemas MIMOCatalà: Estudi d'una metodologia que, sense fer ús de la criptografia, permet limitar la possible "intel.ligència" de l'espia per tal d'augmentar la confidencialitat en comunicacions wireless amb sistemes MIMO
    corecore