160 research outputs found

    A physarum-inspired approach to supply chain network design

    Get PDF
    A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrientsā€™ distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm

    A physarum-inspired approach to supply chain network design

    Get PDF
    A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrientsā€™ distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm

    A multidirectional modified Physarum solver for discrete decision making

    Get PDF
    In this paper, a bio-inspired algorithm able to incrementally grow decision graphs in multiple directions is presented. The heuristic draws inspiration from the behaviour of the slime mould Physarum Polycephalum. In its main vegetative state, the plasmodium, this large single-celled amoeboid organism extends and optimizes a net of veins looking for food. The algorithm is here used to solve classical problems in operations research (symmetric Traveling Salesman and Vehicle Routing Problems). Simulations on selected test cases demonstrate that a multidirectional modied Physarum solver performs better than a unidirectional one. The ability to evaluate decisions from multiple directions enhances the performance of the solver in the construction and selection of optimal decision sequences

    Evaluation of French motorway network in relation to slime mould transport networks

    Get PDF
    Ā© The Author(s) 2016. France has developed a high quality motorway system that has been rapidly rationalised and matured in the late 20th century yet has been founded on ancient, Roman infrastructures. The development of the motorway system is thus an iterative method associated with hierarchical ā€˜top-downā€™ processes taking into consideration factors such as population density, network demand, location of natural resources, civil engineering challenges and population growth. At the opposite extreme to this approach is the development of transport networks within simple biological systems which are typically decentralised, dynamic and emerge from simple, local and ā€˜bottom-upā€™ interactions. We examine the notion, and to what extent, that the structure of a complex motorway network could be predicted by the transport network of the single-celled slime mould Physarum polycephalum. This comparison is explored through its ability to ā€˜deduceā€™ the French motorway network in a series of analogue and digital experiments. We compare Physarum network and motorway network topology in relation to proximity graphs and assess the trade-off between connectivity and minimal network length with a bottom-up model of a virtual plasmodium. We demonstrate that despite the apparent complexity of the challenge Physarum can successfully apply its embodied intelligence to rationalise the motorway topology. We also demonstrate that such calculations prove challenging in the face of significant obstacles such as, mountainous terrain and may account for the missing route between Nice, Grenoble Avignon and Lyon. Finally, we discuss the topological findings with respect to circle and spoke city planning infrastructures and certain species of web-building spiders

    On the development of slime mould morphological, intracellular and heterotic computing devices

    Get PDF
    The use of live biological substrates in the fabrication of unconventional computing (UC) devices is steadily transcending the barriers between science fiction and reality, but efforts in this direction are impeded by ethical considerations, the fieldā€™s restrictively broad multidisciplinarity and our incomplete knowledge of fundamental biological processes. As such, very few functional prototypes of biological UC devices have been produced to date. This thesis aims to demonstrate the computational polymorphism and polyfunctionality of a chosen biological substrate ā€” slime mould Physarum polycephalum, an arguably ā€˜simpleā€™ single-celled organism ā€” and how these properties can be harnessed to create laboratory experimental prototypes of functionally-useful biological UC prototypes. Computing devices utilising live slime mould as their key constituent element can be developed into a) heterotic, or hybrid devices, which are based on electrical recognition of slime mould behaviour via machine-organism interfaces, b) whole-organism-scale morphological processors, whose output is the organismā€™s morphological adaptation to environmental stimuli (input) and c) intracellular processors wherein data are represented by energetic signalling events mediated by the cytoskeleton, a nano-scale protein network. It is demonstrated that each category of device is capable of implementing logic and furthermore, specific applications for each class may be engineered, such as image processing applications for morphological processors and biosensors in the case of heterotic devices. The results presented are supported by a range of computer modelling experiments using cellular automata and multi-agent modelling. We conclude that P. polycephalum is a polymorphic UC substrate insofar as it can process multimodal sensory input and polyfunctional in its demonstrable ability to undertake a variety of computing problems. Furthermore, our results are highly applicable to the study of other living UC substrates and will inform future work in UC, biosensing, and biomedicine

    On the computing potential of intracellular vesicles

    Get PDF
    Ā© 2015 Mayne, Adamatzky. Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing
    • ā€¦
    corecore