42 research outputs found

    A physarum-inspired approach to supply chain network design

    Get PDF
    A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrients’ distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm

    A physarum-inspired approach to supply chain network design

    Get PDF
    A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrients’ distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm

    An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network

    Get PDF
    This article evaluates the efficiency of three meta-heuristic optimiser (viz. MOGA-II, MOPSO and NSGA-II)-based solution methods for designing a sustainable three-echelon distribution network. The distribution network employs a bi-objective location-routing model. Due to the mathematically NP-hard nature of the model a multi-disciplinary optimisation commercial platform, modeFRONTIER®, is adopted to utilise the solution methods. The proposed Design of Experiment (DoE)-guided solution methods are of two phased that solve the NP-hard model to attain minimal total costs and total CO2 emission from transportation. Convergence of the optimisers are tested and compared. Ranking of the realistic results are examined using Pareto frontiers and the Technique for Order Preference by Similarity to Ideal Solution approach, followed by determination of the optimal transportation routes. A case of an Irish dairy processing industry’s three-echelon logistics network is considered to validate the solution methods. The results obtained through the proposed methods provide information on open/closed distribution centres (DCs), vehicle routing patterns connecting plants to DCs, open DCs to retailers and retailers to retailers, and number of trucks required in each route to transport the products. It is found that the DoE-guided NSGA-II optimiser based solution is more efficient when compared with the DoE-guided MOGA-II and MOPSO optimiser based solution methods in solving the bi-objective NP-hard three-echelon sustainable model. This efficient solution method enable managers to structure the physical distribution network on the demand side of a logistics network, minimising total cost and total CO2 emission from transportation while satisfying all operational constraints

    Distributed Algorithms for Peer-to-Peer Energy Trading

    Get PDF
    A S the proliferation of the ’sharing economy’ increases, its phenomenon is actively extending to the power grid, where energy consumers are motivated to use, produce, trade or share energy with the main grid and themselves. To optimise the potential of this changing era in smart grid, considering the complexity requirements of the individual distributed connected components, a distributed coordination algorithm is required to manage the large influx of energy as well as the altruistic goal of diverse energy producers. Furthermore, a trading platform is actively needed to implement these distributed algorithms to match the prosumers, coordinate their resources and maximise their utilities for increased profits and cost savings. This research investigates distributed algorithms for peer-to-peer energy trading and sharing (P2P-ETS) to facilitate discovery, communication and utility maximisation of peers who are trading energy in a P2P fashion. To begin, a four-layer system architectural model is proposed to categorise the key elements and technologies associated with the P2P-ETS. Then, constrained by as few assumptions as possible, while showing promising performance and key metrics, three distributed algorithms are developed to facilitate discovery, peer’s matching, data routing, energy transfer, and utility maximisation of the trading entities. These algorithms utilise only local information to solve the problem with promising results, complementing their presentation with simulations that demonstrate their effectiveness over imperfect communication links. Finally, based on these distributed algorithms, a software platform is developed to support the pairing of prosumers on the P2P-ETS platform. A case study based on real microgrid data is used to verify the performance of the platform which demonstrate increase in local energy consumption. Simulation results show that the developed platform is able to balance local generation and consumption and increase cost savings of 45% for prosumers that trade energy among themselves compared to trading with the power grid. This savings however varies depending on the participants on the platform

    Smart Sustainable Manufacturing Systems

    Get PDF
    With the advent of disruptive digital technologies, companies are facing unprecedented challenges and opportunities. Advanced manufacturing systems are of paramount importance in making key enabling technologies and new products more competitive, affordable, and accessible, as well as for fostering their economic and social impact. The manufacturing industry also serves as an innovator for sustainability since automation coupled with advanced manufacturing technologies have helped manufacturing practices transition into the circular economy. To that end, this Special Issue of the journal Applied Sciences, devoted to the broad field of Smart Sustainable Manufacturing Systems, explores recent research into the concepts, methods, tools, and applications for smart sustainable manufacturing, in order to advance and promote the development of modern and intelligent manufacturing systems. In light of the above, this Special Issue is a collection of the latest research on relevant topics and addresses the current challenging issues associated with the introduction of smart sustainable manufacturing systems. Various topics have been addressed in this Special Issue, which focuses on the design of sustainable production systems and factories; industrial big data analytics and cyberphysical systems; intelligent maintenance approaches and technologies for increased operating life of production systems; zero-defect manufacturing strategies, tools and methods towards online production management; and connected smart factories

    Fair Resource Allocation in Macroscopic Evacuation Planning Using Mathematical Programming: Modeling and Optimization

    Get PDF
    Evacuation is essential in the case of natural and manmade disasters such as hurricanes, nuclear disasters, fire accidents, and terrorism epidemics. Random evacuation plans can increase risks and incur more losses. Hence, numerous simulation and mathematical programming models have been developed over the past few decades to help transportation planners make decisions to reduce costs and protect lives. However, the dynamic transportation process is inherently complex. Thus, modeling this process can be challenging and computationally demanding. The objective of this dissertation is to build a balanced model that reflects the realism of the dynamic transportation process and still be computationally tractable to be implemented in reality by the decision-makers. On the other hand, the users of the transportation network require reasonable travel time within the network to reach their destinations. This dissertation introduces a novel framework in the fields of fairness in network optimization and evacuation to provide better insight into the evacuation process and assist with decision making. The user of the transportation network is a critical element in this research. Thus, fairness and efficiency are the two primary objectives addressed in the work by considering the limited capacity of roads of the transportation network. Specifically, an approximation approach to the max-min fairness (MMF) problem is presented that provides lower computational time and high-quality output compared to the original algorithm. In addition, a new algorithm is developed to find the MMF resource allocation output in nonconvex structure problems. MMF is the fairness policy used in this research since it considers fairness and efficiency and gives priority to fairness. In addition, a new dynamic evacuation modeling approach is introduced that is capable of reporting more information about the evacuees compared to the conventional evacuation models such as their travel time, evacuation time, and departure time. Thus, the contribution of this dissertation is in the two areas of fairness and evacuation. The first part of the contribution of this dissertation is in the field of fairness. The objective in MMF is to allocate resources fairly among multiple demands given limited resources while utilizing the resources for higher efficiency. Fairness and efficiency are contradicting objectives, so they are translated into a bi-objective mathematical programming model and solved using the ϵ-constraint method, introduced by Vira and Haimes (1983). Although the solution is an approximation to the MMF, the model produces quality solutions, when ϵ is properly selected, in less computational time compared to the progressive-filling algorithm (PFA). In addition, a new algorithm is developed in this research called the θ progressive-filling algorithm that finds the MMF in resource allocation for general problems and works on problems with the nonconvex structure problems. The second part of the contribution is in evacuation modeling. The common dynamic evacuation models lack a piece of essential information for achieving fairness, which is the time each evacuee or group of evacuees spend in the network. Most evacuation models compute the total time for all evacuees to move from the endangered zone to the safe destination. Lack of information about the users of the transportation network is the motivation to develop a new optimization model that reports more information about the users of the network. The model finds the travel time, evacuation time, departure time, and the route selected for each group of evacuees. Given that the travel time function is a non-linear convex function of the traffic volume, the function is linearized through a piecewise linear approximation. The developed model is a mixed-integer linear programming (MILP) model with high complexity. Hence, the model is not capable of solving large scale problems. The complexity of the model was reduced by introducing a linear programming (LP) version of the full model. The complexity is significantly reduced while maintaining the exact output. In addition, the new θ-progressive-filling algorithm was implemented on the evacuation model to find a fair and efficient evacuation plan. The algorithm is also used to identify the optimal routes in the transportation network. Moreover, the robustness of the evacuation model was tested against demand uncertainty to observe the model behavior when the demand is uncertain. Finally, the robustness of the model is tested when the traffic flow is uncontrolled. In this case, the model's only decision is to distribute the evacuees on routes and has no control over the departure time

    Biomimetic Buildings: Copying Nature for Energy Efficiency

    Get PDF
    Buildings are responsible for almost one third of global energy consumption. The building and construction sector could thus make a significant contribution to the communal effort needed to meet the Paris Agreement that would substantially reduce global greenhouse gas emissions and mitigate climate change. Given the importance of decarbonizing buildings and making them energy efficient in order to meet the Paris Agreement, and bearing in mind the promising role of biomimetic solutions in achieving this goal, this book reports on some recent research in the field related to bio-inspired approaches for reducing building energy use. This book includes a review of the use of biomimicry in modern building design; how both the Saharan ant and the zebra have inspired strategies for reducing energy use in Panama City; how the study of biomimetics can contribute to city regeneration; the description of a method to connect the thermal physiology of plants and animals to thermal challenges in buildings; how biomimicry could contribute to creating a circular economy in the construction sector; and how advances in electricity storage could benefit from a biomimetic approach. This book thus covers a combination of research and review articles to offer a glimpse into current biomimetic design strategies together with new directions for future research

    Semantic search and composition in unstructured peer-to-peer networks

    Get PDF
    This dissertation focuses on several research questions in the area of semantic search and composition in unstructured peer-to-peer (P2P) networks. Going beyond the state of the art, the proposed semantic-based search strategy S2P2P offers a novel path-suggestion based query routing mechanism, providing a reasonable tradeoff between search performance and network traffic overhead. In addition, the first semantic-based data replication scheme DSDR is proposed. It enables peers to use semantic information to select replica numbers and target peers to address predicted future demands. With DSDR, k-random search can achieve better precision and recall than it can with a near-optimal non-semantic replication strategy. Further, this thesis introduces a functional automatic semantic service composition method, SPSC. Distinctively, it enables peers to jointly compose complex workflows with high cumulative recall but low network traffic overhead, using heuristic-based bidirectional haining and service memorization mechanisms. Its query branching method helps to handle dead-ends in a pruned search space. SPSC is proved to be sound and a lower bound of is completeness is given. Finally, this thesis presents iRep3D for semantic-index based 3D scene selection in P2P search. Its efficient retrieval scales to answer hybrid queries involving conceptual, functional and geometric aspects. iRep3D outperforms previous representative efforts in terms of search precision and efficiency.Diese Dissertation bearbeitet Forschungsfragen zur semantischen Suche und Komposition in unstrukturierten Peer-to-Peer Netzen(P2P). Die semantische Suchstrategie S2P2P verwendet eine neuartige Methode zur Anfrageweiterleitung basierend auf Pfadvorschlägen, welche den Stand der Wissenschaft übertrifft. Sie bietet angemessene Balance zwischen Suchleistung und Kommunikationsbelastung im Netzwerk. Außerdem wird das erste semantische System zur Datenreplikation genannt DSDR vorgestellt, welche semantische Informationen berücksichtigt vorhergesagten zukünftigen Bedarf optimal im P2P zu decken. Hierdurch erzielt k-random-Suche bessere Präzision und Ausbeute als mit nahezu optimaler nicht-semantischer Replikation. SPSC, ein automatisches Verfahren zur funktional korrekten Komposition semantischer Dienste, ermöglicht es Peers, gemeinsam komplexe Ablaufpläne zu komponieren. Mechanismen zur heuristischen bidirektionalen Verkettung und Rückstellung von Diensten ermöglichen hohe Ausbeute bei geringer Belastung des Netzes. Eine Methode zur Anfrageverzweigung vermeidet das Feststecken in Sackgassen im beschnittenen Suchraum. Beweise zur Korrektheit und unteren Schranke der Vollständigkeit von SPSC sind gegeben. iRep3D ist ein neuer semantischer Selektionsmechanismus für 3D-Modelle in P2P. iRep3D beantwortet effizient hybride Anfragen unter Berücksichtigung konzeptioneller, funktionaler und geometrischer Aspekte. Der Ansatz übertrifft vorherige Arbeiten bezüglich Präzision und Effizienz

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies
    corecore