6 research outputs found

    A physarum-inspired approach to supply chain network design

    Get PDF
    A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrients’ distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm

    A physarum-inspired approach to supply chain network design

    Get PDF
    A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrients’ distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm

    The food seeking behavior of slime mold: a macroscopic approach

    Get PDF
    Starting from a particle model we derive a macroscopic aggregation-diffusion equation for the evolution of slime mold under the assumption of propagation of chaos in the large particle limit. We analyze properties of the macroscopic model in the stationary case and study the behavior of the slime mold between food sources. The efficient numerical simulation of the aggregation-diffusion equation allows for a detailed analysis of the interplay between the different regimes drift, interaction and diffusion.Comment: 23 pages, 11 figure

    A physarum network evolution model based on IBTM

    Full text link
    The traditional Cellular Automation-based Physarum model reveals the process of amoebic self-organized movement and self-adaptive network formation based on bubble transportation. However, a bubble in the traditional Physarum model often transports within active zones and has little change to explore newareas.And the efficiency of evolution is very low because there is only one bubble in the system. This paper proposes an improved model, named as Improved Bubble Transportation Model (IBTM). Our model adds a time label for each grid of environment in order to drive bubbles to explore newareas, and deploysmultiple bubbles in order to improve the evolving efficiency of Physarum network.We first evaluate the morphological characteristics of IBTM with the real Physarum, and then compare the evolving time between the traditional model and IBTM. The results show that IBTM can obtain higher efficiency and stability in the process of forming an adaptive network
    corecore