279 research outputs found

    Signal processing in local neuronal circuits based on activity-dependent noise and competition

    Full text link
    We study the characteristics of weak signal detection by a recurrent neuronal network with plastic synaptic coupling. It is shown that in the presence of an asynchronous component in synaptic transmission, the network acquires selectivity with respect to the frequency of weak periodic stimuli. For non-periodic frequency-modulated stimuli, the response is quantified by the mutual information between input (signal) and output (network's activity), and is optimized by synaptic depression. Introducing correlations in signal structure resulted in the decrease of input-output mutual information. Our results suggest that in neural systems with plastic connectivity, information is not merely carried passively by the signal; rather, the information content of the signal itself might determine the mode of its processing by a local neuronal circuit.Comment: 15 pages, 4 pages, in press for "Chaos

    Modelling Vesicular Release at Hippocampal Synapses

    Get PDF
    We study local calcium dynamics leading to a vesicle fusion in a stochastic, and spatially explicit, biophysical model of the CA3-CA1 presynaptic bouton. The kinetic model for vesicle release has two calcium sensors, a sensor for fast synchronous release that lasts a few tens of milliseconds and a separate sensor for slow asynchronous release that lasts a few hundred milliseconds. A wide range of data can be accounted for consistently only when a refractory period lasting a few milliseconds between releases is included. The inclusion of a second sensor for asynchronous release with a slow unbinding site, and thereby a long memory, affects short-term plasticity by facilitating release. Our simulations also reveal a third time scale of vesicle release that is correlated with the stimulus and is distinct from the fast and the slow releases. In these detailed Monte Carlo simulations all three time scales of vesicle release are insensitive to the spatial details of the synaptic ultrastructure. Furthermore, our simulations allow us to identify features of synaptic transmission that are universal and those that are modulated by structure

    Astrocytes Optimize the Synaptic Transmission of Information

    Get PDF
    Chemical synapses transmit information via the release of neurotransmitter-filled vesicles from the presynaptic terminal. Using computational modeling, we predict that the limited availability of neurotransmitter resources in combination with the spontaneous release of vesicles limits the maximum degree of enhancement of synaptic transmission. This gives rise to an optimal tuning that depends on the number of active zones. There is strong experimental evidence that astrocytes that enwrap synapses can modulate the probabilities of vesicle release through bidirectional signaling and hence regulate synaptic transmission. For low-fidelity hippocampal synapses, which typically have only one or two active zones, the predicted optimal values lie close to those determined by experimentally measured astrocytic feedback, suggesting that astrocytes optimize synaptic transmission of information

    Shunting Inhibition Controls the Gain Modulation Mediated by Asynchronous Neurotransmitter Release in Early Development

    Get PDF
    The sensitivity of a neuron to its input can be modulated in several ways. Changes in the slope of the neuronal input-output curve depend on factors such as shunting inhibition, background noise, frequency-dependent synaptic excitation, and balanced excitation and inhibition. However, in early development GABAergic interneurons are excitatory and other mechanisms such as asynchronous transmitter release might contribute to regulating neuronal sensitivity. We modeled both phasic and asynchronous synaptic transmission in early development to study the impact of activity-dependent noise and short-term plasticity on the synaptic gain. Asynchronous release decreased or increased the gain depending on the membrane conductance. In the high shunt regime, excitatory input due to asynchronous release was divisive, whereas in the low shunt regime it had a nearly multiplicative effect on the firing rate. In addition, sensitivity to correlated inputs was influenced by shunting and asynchronous release in opposite ways. Thus, asynchronous release can regulate the information flow at synapses and its impact can be flexibly modulated by the membrane conductance

    GPU-based implementation of real-time system for spiking neural networks

    Get PDF
    Real-time simulations of biological neural networks (BNNs) provide a natural platform for applications in a variety of fields: data classification and pattern recognition, prediction and estimation, signal processing, control and robotics, prosthetics, neurological and neuroscientific modeling. BNNs possess inherently parallel architecture and operate in continuous signal domain. Spiking neural networks (SNNs) are type of BNNs with reduced signal dynamic range: communication between neurons occurs by means of time-stamped events (spikes). SNNs allow reduction of algorithmic complexity and communication data size at a price of little loss in accuracy. Simulation of SNNs using traditional sequential computer architectures results in significant time penalty. This penalty prohibits application of SNNs in real-time systems. Graphical processing units (GPUs) are cost effective devices specifically designed to exploit parallel shared memory-based floating point operations applied not only to computer graphics, but also to scientific computations. This makes them an attractive solution for SNN simulation compared to that of FPGA, ASIC and cluster message passing computing systems. Successful implementations of GPU-based SNN simulations have been already reported. The contribution of this thesis is the development of a scalable GPU-based realtime system that provides initial framework for design and application of SNNs in various domains. The system delivers an interface that establishes communication with neurons in the network as well as visualizes the outcome produced by the network. Accuracy of the simulation is emphasized due to its importance in the systems that exploit spike time dependent plasticity, classical conditioning and learning. As a result, a small network of 3840 Izhikevich neurons implemented as a hybrid system with Parker-Sochacki numerical integration method achieves real time operation on GTX260 device. An application case study of the system modeling receptor layer of retina is reviewed

    Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone

    Get PDF
    The balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs from single pyramidal cells with 4 millisecond temporal and 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among synapses supplied by the same axon, and that the synchronicity of release is reduced at low release probability synapses. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the release area than synchronous sites. Together, our results reveal a universal relationship between the two major functional properties of synapses – the timing and the overall efficacy of neurotransmitter release
    • …
    corecore