6,122 research outputs found

    Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case

    Full text link
    We theoretically investigate collective phase synchronization between interacting groups of globally coupled noisy identical phase oscillators exhibiting macroscopic rhythms. Using the phase reduction method, we derive coupled collective phase equations describing the macroscopic rhythms of the groups from microscopic Langevin phase equations of the individual oscillators via nonlinear Fokker-Planck equations. For sinusoidal microscopic coupling, we determine the type of the collective phase coupling function, i.e., whether the groups exhibit in-phase or anti-phase synchronization. We show that the macroscopic rhythms can exhibit effective anti-phase synchronization even if the microscopic phase coupling between the groups is in-phase, and vice versa. Moreover, near the onset of collective oscillations, we analytically obtain the collective phase coupling function using center-manifold and phase reductions of the nonlinear Fokker-Planck equations.Comment: 15 pages, 7 figure

    Low dimensional manifolds for exact representation of open quantum systems

    Full text link
    Weakly nonlinear degrees of freedom in dissipative quantum systems tend to localize near manifolds of quasi-classical states. We present a family of analytical and computational methods for deriving optimal unitary model transformations based on representations of finite dimensional Lie groups. The transformations are optimal in that they minimize the quantum relative entropy distance between a given state and the quasi-classical manifold. This naturally splits the description of quantum states into quasi-classical coordinates that specify the nearest quasi-classical state and a transformed quantum state that can be represented in fewer basis levels. We derive coupled equations of motion for the coordinates and the transformed state and demonstrate how this can be exploited for efficient numerical simulation. Our optimization objective naturally quantifies the non-classicality of states occurring in some given open system dynamics. This allows us to compare the intrinsic complexity of different open quantum systems.Comment: Added section on semi-classical SR-latch, added summary of method, revised structure of manuscrip

    Synchronization of coupled stochastic limit cycle oscillators

    Full text link
    For a class of coupled limit cycle oscillators, we give a condition on a linear coupling operator that is necessary and sufficient for exponential stability of the synchronous solution. We show that with certain modifications our method of analysis applies to networks with partial, time-dependent, and nonlinear coupling schemes, as well as to ensembles of local systems with nonperiodic attractors. We also study robustness of synchrony to noise. To this end, we analytically estimate the degree of coherence of the network oscillations in the presence of noise. Our estimate of coherence highlights the main ingredients of stochastic stability of the synchronous regime. In particular, it quantifies the contribution of the network topology. The estimate of coherence for the randomly perturbed network can be used as means for analytic inference of degree of stability of the synchronous solution of the unperturbed deterministic network. Furthermore, we show that in large networks, the effects of noise on the dynamics of each oscillator can be effectively controlled by varying the strength of coupling, which provides a powerful mechanism of denoising. This suggests that the organization of oscillators in a coupled network may play an important role in maintaining robust oscillations in random environment. The analysis is complemented with the results of numerical simulations of a neuronal network. PACS: 05.45.Xt, 05.40.Ca Keywords: synchronization, coupled oscillators, denoising, robustness to noise, compartmental modelComment: major revisions; two new section
    corecore