39 research outputs found

    09091 Abstracts Collection -- Formal Methods in Molecular Biology

    Get PDF
    From 23. February to 27. February 2009, the Dagstuhl Seminar 09091 ``Formal Methods in Molecular Biology \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Biomodelkit - a framework for modular biomodel-engineering

    No full text
    Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2017von Dipl.-Ing. Mary-Ann BlätkeLiteraturverzeichnis: Seite [177]-18

    Infobiotics : computer-aided synthetic systems biology

    Get PDF
    Until very recently Systems Biology has, despite its stated goals, been too reductive in terms of the models being constructed and the methods used have been, on the one hand, unsuited for large scale adoption or integration of knowledge across scales, and on the other hand, too fragmented. The thesis of this dissertation is that better computational languages and seamlessly integrated tools are required by systems and synthetic biologists to enable them to meet the significant challenges involved in understanding life as it is, and by designing, modelling and manufacturing novel organisms, to understand life as it could be. We call this goal, where everything necessary to conduct model-driven investigations of cellular circuitry and emergent effects in populations of cells is available without significant context-switching, “one-pot” in silico synthetic systems biology in analogy to “one-pot” chemistry and “one-pot” biology. Our strategy is to increase the understandability and reusability of models and experiments, thereby avoiding unnecessary duplication of effort, with practical gains in the efficiency of delivering usable prototype models and systems. Key to this endeavour are graphical interfaces that assists novice users by hiding complexity of the underlying tools and limiting choices to only what is appropriate and useful, thus ensuring that the results of in silico experiments are consistent, comparable and reproducible. This dissertation describes the conception, software engineering and use of two novel software platforms for systems and synthetic biology: the Infobiotics Workbench for modelling, in silico experimentation and analysis of multi-cellular biological systems; and DNA Library Designer with the DNALD language for the compact programmatic specification of combinatorial DNA libraries, as the first stage of a DNA synthesis pipeline, enabling methodical exploration biological problem spaces. Infobiotics models are formalised as Lattice Population P systems, a novel framework for the specification of spatially-discrete and multi-compartmental rule-based models, imbued with a stochastic execution semantics. This framework was developed to meet the needs of real systems biology problems: hormone transport and signalling in the root of Arabidopsis thaliana, and quorum sensing in the pathogenic bacterium Pseudomonas aeruginosa. Our tools have also been used to prototype a novel synthetic biological system for pattern formation, that has been successfully implemented in vitro. Taken together these novel software platforms provide a complete toolchain, from design to wet-lab implementation, of synthetic biological circuits, enabling a step change in the scale of biological investigations that is orders of magnitude greater than could previously be performed in one in silico “pot”

    From Epidemic to Pandemic Modelling

    Get PDF
    We present a methodology for systematically extending epidemic models to multilevel and multiscale spatio-temporal pandemic ones. Our approach builds on the use of coloured stochastic and continuous Petri nets facilitating the sound component-based extension of basic SIR models to include population stratification and also spatio-geographic information and travel connections, represented as graphs, resulting in robust stratified pandemic metapopulation models. This method is inherently easy to use, producing scalable and reusable models with a high degree of clarity and accessibility which can be read either in a deterministic or stochastic paradigm. Our method is supported by a publicly available platform PetriNuts; it enables the visual construction and editing of models; deterministic, stochastic and hybrid simulation as well as structural and behavioural analysis. All the models are available as supplementary material, ensuring reproducibility.Comment: 79 pages (with Appendix), 23 figures, 7 table

    Infobiotics : computer-aided synthetic systems biology

    Get PDF
    Until very recently Systems Biology has, despite its stated goals, been too reductive in terms of the models being constructed and the methods used have been, on the one hand, unsuited for large scale adoption or integration of knowledge across scales, and on the other hand, too fragmented. The thesis of this dissertation is that better computational languages and seamlessly integrated tools are required by systems and synthetic biologists to enable them to meet the significant challenges involved in understanding life as it is, and by designing, modelling and manufacturing novel organisms, to understand life as it could be. We call this goal, where everything necessary to conduct model-driven investigations of cellular circuitry and emergent effects in populations of cells is available without significant context-switching, “one-pot” in silico synthetic systems biology in analogy to “one-pot” chemistry and “one-pot” biology. Our strategy is to increase the understandability and reusability of models and experiments, thereby avoiding unnecessary duplication of effort, with practical gains in the efficiency of delivering usable prototype models and systems. Key to this endeavour are graphical interfaces that assists novice users by hiding complexity of the underlying tools and limiting choices to only what is appropriate and useful, thus ensuring that the results of in silico experiments are consistent, comparable and reproducible. This dissertation describes the conception, software engineering and use of two novel software platforms for systems and synthetic biology: the Infobiotics Workbench for modelling, in silico experimentation and analysis of multi-cellular biological systems; and DNA Library Designer with the DNALD language for the compact programmatic specification of combinatorial DNA libraries, as the first stage of a DNA synthesis pipeline, enabling methodical exploration biological problem spaces. Infobiotics models are formalised as Lattice Population P systems, a novel framework for the specification of spatially-discrete and multi-compartmental rule-based models, imbued with a stochastic execution semantics. This framework was developed to meet the needs of real systems biology problems: hormone transport and signalling in the root of Arabidopsis thaliana, and quorum sensing in the pathogenic bacterium Pseudomonas aeruginosa. Our tools have also been used to prototype a novel synthetic biological system for pattern formation, that has been successfully implemented in vitro. Taken together these novel software platforms provide a complete toolchain, from design to wet-lab implementation, of synthetic biological circuits, enabling a step change in the scale of biological investigations that is orders of magnitude greater than could previously be performed in one in silico “pot”

    Heparan Sulfate Induces Necroptosis in Murine Cardiomyocytes: A Medical-In silico Approach Combining In vitro Experiments and Machine Learning.

    Get PDF
    Life-threatening cardiomyopathy is a severe, but common, complication associated with severe trauma or sepsis. Several signaling pathways involved in apoptosis and necroptosis are linked to trauma- or sepsis-associated cardiomyopathy. However, the underling causative factors are still debatable. Heparan sulfate (HS) fragments belong to the class of danger/damage-associated molecular patterns liberated from endothelial-bound proteoglycans by heparanase during tissue injury associated with trauma or sepsis. We hypothesized that HS induces apoptosis or necroptosis in murine cardiomyocytes. By using a novel Medical-In silico approach that combines conventional cell culture experiments with machine learning algorithms, we aimed to reduce a significant part of the expensive and time-consuming cell culture experiments and data generation by using computational intelligence (refinement and replacement). Cardiomyocytes exposed to HS showed an activation of the intrinsic apoptosis signal pathway via cytochrome C and the activation of caspase 3 (both p < 0.001). Notably, the exposure of HS resulted in the induction of necroptosis by tumor necrosis factor α and receptor interaction protein 3 (p < 0.05; p < 0.01) and, hence, an increased level of necrotic cardiomyocytes. In conclusion, using this novel Medical-In silico approach, our data suggest (i) that HS induces necroptosis in cardiomyocytes by phosphorylation (activation) of receptor-interacting protein 3, (ii) that HS is a therapeutic target in trauma- or sepsis-associated cardiomyopathy, and (iii) indicate that this proof-of-concept is a first step toward simulating the extent of activated components in the pro-apoptotic pathway induced by HS with only a small data set gained from the in vitro experiments by using machine learning algorithms.This work was supported by an intramural grant to LM (START 46/16) and EZ (START 113/17). LM has received a grant by the Deutsche Forschungsgemeinschaft (DFG, MA 7082/1–1). We thank Dr Claycomb and his coworkers for providing the HL-1 cells and a detailed documentation. The Immunohistochemistry and Confocal Microscopy Unit, a core facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen, within the Faculty of Medicine at the RWTH Aachen University, supported this work
    corecore