271 research outputs found

    Translation Of AADL To PNML To Ensure The Utilization Of Petri Nets

    Get PDF
    Architecture Analysis and Design Language (AADL), which is used to design and analyze software and hardware architectures of embedded and real-time systems, has proven to be a very efficient way of expressing the non-functional properties of safety-critical systems and architectural modeling. Petri nets are the graphical and mathematical modeling tools used to describe and study information processing systems characterized as concurrent and distributed. As AADL lacks the formal semantics needed to show the functional properties of such systems, the objective of this research was to extend AADL to enable other Petri nets to be incorporated into Petri Net Markup Language (PNML), an interchange language for Petri nets. PNML makes it possible to incorporate different types of analysis using different types of Petri net. To this end, the interchange format Extensible Markup Language (XML) was selected and AADL converted to AADL-XML (the XML format of AADL) and Petri nets to PNML, the XML-format of Petri nets, via XSLT script. PNML was chosen as the transfer format for Petri nets due to its universality, which enables designers to easily map PNML to many different types of Petri nets. Manual conversion of AADL to PNML is error-prone and tedious and thus requires automation, so XSLT script was utilized for the conversion of the two languages in their XML format. Mapping rules were defined for the conversion from AADL to PNML and the translation to XSLT automated. Finally, a PNML plug-in was designed and incorporated into the Open Source AADL Tool Environment (OSATE)

    A Review on Software Performance Analysis for Early Detection of Latent Faults in Design Models

    Get PDF
    Organizations and society could face major breakdown if IT strategies do not comply with performance requirements. This is more so in the era of globalization and emergence of technologies caused more issues. Software design models might have latent and potential issues that affect performance of software. Often performance is the neglected area in the industry. Identifying performance issues in the design phase can save time, money and effort. Software engineers need to know the performance requirements so as to ensure quality software to be developed. Software performance engineering a quantitative approach for building software systems that can meet performance requirements. There are many design models based on UML, Petri Nets and Product-Forms. These models can be used to derive performance models that make use of LQN, MSC, QNM and so on. The design models are to be mapped to performance models in order to predict performance of system early and render valuable feedback for improving quality of the system. Due to emerging distributed technologies such as EJB, CORBA, DCOM and SOA applications became very complex with collaboration with other software. The component based software systems, software systems that are embedded, distributed likely need more systematic performance models that can leverage the quality of such systems. Towards this end many techniques came into existence. This paper throws light into software performance analysis and its present state-of-the-art. It reviews different design models and performance models that provide valuable insights to make well informed decisions

    Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology and Applications Symposium

    Get PDF
    The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS\u2707) presents papers describing contributions both to state of the art and state of the practice in the broad field of real-time and embedded systems. The 17 accepted papers were selected from 19 submissions. This proceedings is also available as Washington University in St. Louis Technical Report WUCSE-2007-17, at http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special thanks go to the General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and Frank Mueller for their support and guidance

    Formal Verification of Real-time Systems with Preemptive Scheduling

    Get PDF
    International audienceIn this paper, we propose a method for the verification of timed properties for real-time systems featuring a preemptive scheduling policy: the system, modeled as a scheduling time Petri net, is first translated into a linear hybrid automaton to which it is time-bisimilar. Timed properties can then be verified using HyTech. The efficiency of this approach leans on two major points: first, the translation features a minimization of the number of variables (clocks) of the resulting automaton, which is a critical parameter for the efficiency of the ensuing verification. Second, the translation is performed by an over-approximating algorithm, which is based on Difference Bound Matrix and therefore efficient, that nonetheless produces a time-bisimilar automaton despite the over-approximation. The proposed modeling and verification method are generic enough to account for many scheduling policies. In this paper, we specifically show how to deal with Fixed Priority and Earliest Deadline First policies, with the possibility of using Round-Robin for tasks with the same priority. We have implemented the method and give some experimental results illustrating its efficiency

    Schedulability Analysis of Distributed Multi-core Avionics Systems with UPPAAL

    Get PDF

    A hazard analysis via an improved timed colored petri net with time–space coupling safety constraint

    Get PDF
    AbstractPetri nets are graphical and mathematical tools that are applicable to many systems for modeling, simulation, and analysis. With the emergence of the concept of partitioning in time and space domains proposed in avionics application standard software interface (ARINC 653), it has become difficult to analyze time–space coupling hazards resulting from resource partitioning using classical or advanced Petri nets. In this paper, we propose a time–space coupling safety constraint and an improved timed colored Petri net with imposed time–space coupling safety constraints (TCCP-NET) to fill this requirement gap. Time–space coupling hazard analysis is conducted in three steps: specification modeling, simulation execution, and results analysis. A TCCP-NET is employed to model and analyze integrated modular avionics (IMA), a real-time, safety-critical system. The analysis results are used to verify whether there exist time–space coupling hazards at runtime. The method we propose demonstrates superior modeling of safety-critical real-time systems as it can specify resource allocations in both time and space domains. TCCP-NETs can effectively detect underlying time–space coupling hazards
    • …
    corecore