528 research outputs found

    A Decidable Characterization of a Graphical Pi-calculus with Iterators

    Full text link
    This paper presents the Pi-graphs, a visual paradigm for the modelling and verification of mobile systems. The language is a graphical variant of the Pi-calculus with iterators to express non-terminating behaviors. The operational semantics of Pi-graphs use ground notions of labelled transition and bisimulation, which means standard verification techniques can be applied. We show that bisimilarity is decidable for the proposed semantics, a result obtained thanks to an original notion of causal clock as well as the automatic garbage collection of unused names.Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    On the Category of Petri Net Computations

    No full text
    We introduce the notion of strongly concatenable process as a refinement of concatenable processes [DMM89] which can be expressed axiomatically via a functor Q[]Q[-] from the category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the precise sense that, for each net NN, the strongly concatenable processes of NN are isomorphic to the arrows of Q[]Q[-]. In addition, we identify a coreflection right adjoint to Q[]Q[-] and characterize its replete image, thus yielding an axiomatization of the category of net computations

    ω-Inductive completion of monoidal categories and infinite petri net computations

    No full text
    There exists a KZ-doctrine on the 2-category of the locally small categories whose algebras are exactly the categories which admits all the colimits indexed by ω-chains. The paper presents a wide survey of this topic. In addition, we show that this chain cocompletion KZ-doctrine lifts smoothly to KZ-doctrines on (many variations of) the 2-categories of monoidal and symmetric monoidal categories, thus yielding a universal construction of colimits of ω-chains in those categories. Since the processes of Petri nets may be axiomatized in terms of symmetric monoidal categories this result provides a universal construction of the algebra of infinite processes of a Petri net

    Calculus for decision systems

    Get PDF
    The conceptualization of the term system has become highly dependent on the application domain. What a physicist means by the term system might be different than what a sociologist means by the same term. In 1956, Bertalanffy [1] defined a system as a set of units with relationships among them . This and many other definitions of system share the idea of a system as a black box that has parts or elements interacting between each other. This means that at some level of abstraction all systems are similar, what eventually differentiates one system from another is the set of underlining equations which describe how these parts interact within the system. ^ In this dissertation we develop a framework that allows us to characterize systems from an interaction level, i.e., a framework that gives us the capability to capture how/when the elements of the system interact. This framework is a process algebra called Calculus for Decision Systems (CDS). This calculus provides means to create mathematical expressions that capture how the systems interact and react to different stimuli. It also provides the ability to formulate procedures to analyze these interactions and to further derive other interesting insights of the system. ^ After defining the syntax and reduction rules of the CDS, we develop a notion of behavioral equivalence for decision systems. This equivalence, called bisimulation, allows us to compare decision systems from the behavioral standpoint. We apply our results to games in extensive form, some physical systems, and cyber-physical systems. ^ Using the CDS for the study of games in extensive form we were able to define the concept of subgame perfect equilibrium for a two-person game with perfect information. Then, we investigate the behavior of two games played in parallel by one of the players. We also explore different couplings between games, and compare - using bisimulation - the behavior of two games that are the result of two different couplings. The results showed that, with some probability, the behavior of playing a game as first player, or second player, could be irrelevant. ^ Decision systems can be comprised by multiple decision makers. We show that in the case where two decision makers interact, we can use extensive games to represent the conflict resolution. For the case where there are more than two decision makers, we presented how to characterize the interactions between elements within an organizational structure. Organizational structures can be perceived as multiple players interacting in a game. In the context of organizational structures, we use the CDS as an information sharing mechanism to transfer the inputs and outputs from one extensive game to another. We show the suitability of our calculus for the analysis of organizational structures, and point out some potential research extensions for the analysis of organizational structures. ^ The other general area we investigate using the CDS is cyber-physical systems. Cyber-physical systems or CPS is a class of systems that are characterized by a tight relationship between systems (or processes) in the areas of computing, communication and physics. We use the CDS to describe the interaction between elements in some simple mechanical system, as well as a particular case of the generalized railroad crossing (GRC) problem, which is a typical case of CPS. We show two approaches to the solution of the GRC problem. ^ This dissertation does not intend to develop new methods to solve game theoretical problems or equations of motion of a physical system, it aims to be a seminal work towards the creation of a general framework to study systems and equivalence of systems from a formal standpoint, and to increase the applications of formal methods to real-world problems

    Process Calculi Abstractions for Biology

    Get PDF
    Several approaches have been proposed to model biological systems by means of the formal techniques and tools available in computer science. To mention just a few of them, some representations are inspired by Petri Nets theory, and some other by stochastic processes. A most recent approach consists in interpreting the living entities as terms of process calculi where the behavior of the represented systems can be inferred by applying syntax-driven rules. A comprehensive picture of the state of the art of the process calculi approach to biological modeling is still missing. This paper goes in the direction of providing such a picture by presenting a comparative survey of the process calculi that have been used and proposed to describe the behavior of living entities. This is the preliminary version of a paper that was published in Algorithmic Bioprocesses. The original publication is available at http://www.springer.com/computer/foundations/book/978-3-540-88868-
    corecore