53 research outputs found

    SgWalk: Location Recommendation by User Subgraph-Based Graph Embedding

    Get PDF
    Popularity of Location-based Social Networks (LBSNs) provides an opportunity to collect massive multi-modal datasets that contain geographical information, as well as time and social interactions. Such data is a useful resource for generating personalized location recommendations. Such heterogeneous data can be further extended with notions of trust between users, the popularity of locations, and the expertise of users. Recently the use of Heterogeneous Information Network (HIN) models and graph neural architectures have proven successful for recommendation problems. One limitation of such a solution is capturing the contextual relationships between the nodes in the heterogeneous network. In location recommendation, spatial context is a frequently used consideration such that users prefer to get recommendations within their spatial vicinity. To solve this challenging problem, we propose a novel Heterogeneous Information Network (HIN) embedding technique, SgWalk, which explores the proximity between users and locations and generates location recommendations via subgraph-based node embedding. SgWalk follows four steps: building users subgraphs according to location context, generating random walk sequences over user subgraphs, learning embeddings of nodes in LBSN graph, and generating location recommendations using vector representation of the nodes. SgWalk is differentiated from existing techniques relying on meta-path or bi-partite graphs by means of utilizing the contextual user subgraph. In this way, it is aimed to capture contextual relationships among heterogeneous nodes more effectively. The recommendation accuracy of SgWalk is analyzed through extensive experiments conducted on benchmark datasets in terms of top-n location recommendations. The accuracy evaluation results indicate minimum 23% (@5 recommendation) average improvement in accuracy compared to baseline techniques and the state-of-the-art heterogeneous graph embedding techniques in the literature

    A study of neighbour selection strategies for POI recommendation in LBSNs

    Get PDF
    Location-based Recommender Systems (LBRSs) are gaining importance with the proliferation of location-based services provided by mobile devices as well as user-generated content in social networks. Collaborative approaches for recommendation rely on the opinions of liked-minded people, so called neighbors, for prediction. Thus, an adequate selection of such neighbors becomes essential for achieving good prediction results. The aim of this work is to explore different strategies to select neighbors in the context of a collaborative filtering based recommender system for POI (places of interest) recommendations. Whereas standard methods are based on user similarity to delimit a neighborhood, in this work several strategies are proposed based on direct social relationships and geographical information extracted from Location-based Social Networks (LBSNs). The impact of the different strategies proposed has been evaluated and compared against the traditional collaborative filtering approach using a dataset from a popular network as Foursquare. In general terms, the proposed strategies for selecting neighbors based on the different elements available in a LBSN achieve better results than the traditional collaborative filtering approach. Our findings can be helpful both to researchers in the recommender systems area as well as to recommender systems developers in the context of LBSNs, since they can take into account our results to design and provide more effective services considering the huge amount of knowledge produced in LBSNs.Fil: Rios, Carlos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Instituto Superior de IngenierĂ­a del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de IngenierĂ­a del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Instituto Superior de IngenierĂ­a del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de IngenierĂ­a del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Instituto Superior de IngenierĂ­a del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de IngenierĂ­a del Software; Argentin

    Recommender Systems for Online and Mobile Social Networks: A survey

    Full text link
    Recommender Systems (RS) currently represent a fundamental tool in online services, especially with the advent of Online Social Networks (OSN). In this case, users generate huge amounts of contents and they can be quickly overloaded by useless information. At the same time, social media represent an important source of information to characterize contents and users' interests. RS can exploit this information to further personalize suggestions and improve the recommendation process. In this paper we present a survey of Recommender Systems designed and implemented for Online and Mobile Social Networks, highlighting how the use of social context information improves the recommendation task, and how standard algorithms must be enhanced and optimized to run in a fully distributed environment, as opportunistic networks. We describe advantages and drawbacks of these systems in terms of algorithms, target domains, evaluation metrics and performance evaluations. Eventually, we present some open research challenges in this area

    Point of interests recommendation in location-based social networks

    Get PDF

    Context-Aware Personalized Point-of-Interest Recommendation System

    Get PDF
    The increasing volume of information has created overwhelming challenges to extract the relevant items manually. Fortunately, the online systems, such as e-commerce (e.g., Amazon), location-based social networks (LBSNs) (e.g., Facebook) among many others have the ability to track end users\u27 browsing and consumption experiences. Such explicit experiences (e.g., ratings) and many implicit contexts (e.g., social, spatial, temporal, and categorical) are useful in preference elicitation and recommendation. As an emerging branch of information filtering, the recommendation systems are already popular in many domains, such as movies (e.g., YouTube), music (e.g., Pandora), and Point-of-Interest (POI) (e.g., Yelp). The POI domain has many contextual challenges (e.g., spatial (preferences to a near place), social (e.g., friend\u27s influence), temporal (e.g., popularity at certain time), categorical (similar preferences to places with same category), locality of POI, etc.) that can be crucial for an efficient recommendation. The user reviews shared across different social networks provide granularity in users\u27 consumption experience. From the data mining and machine learning perspective, following three research directions are identified and considered relevant to an efficient context-aware POI recommendation, (1) incorporation of major contexts into a single model and a detailed analysis of the impact of those contexts, (2) exploitation of user activity and location influence to model hierarchical preferences, and (3) exploitation of user reviews to formulate the aspect opinion relation and to generate explanation for recommendation. This dissertation presents different machine learning and data mining-based solutions to address the above-mentioned research problems, including, (1) recommendation models inspired from contextualized ranking and matrix factorization that incorporate the major contexts and help in analysis of their importance, (2) hierarchical and matrix-factorization models that formulate users\u27 activity and POI influences on different localities that model hierarchical preferences and generate individual and sequence recommendations, and (3) graphical models inspired from natural language processing and neural networks to generate recommendations augmented with aspect-based explanations

    Activity-aware Human Mobility Prediction with Hierarchical Graph Attention Recurrent Network

    Full text link
    Human mobility prediction is a fundamental task essential for various applications, including urban planning, location-based services and intelligent transportation systems. Existing methods often ignore activity information crucial for reasoning human preferences and routines, or adopt a simplified representation of the dependencies between time, activities and locations. To address these issues, we present Hierarchical Graph Attention Recurrent Network (HGARN) for human mobility prediction. Specifically, we construct a hierarchical graph based on all users' history mobility records and employ a Hierarchical Graph Attention Module to capture complex time-activity-location dependencies. This way, HGARN can learn representations with rich human travel semantics to model user preferences at the global level. We also propose a model-agnostic history-enhanced confidence (MAHEC) label to focus our model on each user's individual-level preferences. Finally, we introduce a Temporal Module, which employs recurrent structures to jointly predict users' next activities (as an auxiliary task) and their associated locations. By leveraging the predicted future user activity features through a hierarchical and residual design, the accuracy of the location predictions can be further enhanced. For model evaluation, we test the performances of our HGARN against existing SOTAs in both the recurring and explorative settings. The recurring setting focuses on assessing models' capabilities to capture users' individual-level preferences, while the results in the explorative setting tend to reflect the power of different models to learn users' global-level preferences. Overall, our model outperforms other baselines significantly in all settings based on two real-world human mobility data benchmarks. Source codes of HGARN are available at https://github.com/YihongT/HGARN.Comment: 11 page

    Recommending places blased on the wisdom-of-the-crowd

    Get PDF
    The collective opinion of a great number of users, popularly known as wisdom of the crowd, has been seen as powerful tool for solving problems. As suggested by Surowiecki in his books [134], large groups of people are now considered smarter than an elite few, regardless of how brilliant at solving problems or coming to wise decisions they are. This phenomenon together with the availability of a huge amount of data on the Web has propitiated the development of solutions which employ the wisdom-of-the-crowd to solve a variety of problems in different domains, such as recommender systems [128], social networks [100] and combinatorial problems [152, 151]. The vast majority of data on the Web has been generated in the last few years by billions of users around the globe using their mobile devices and web applications, mainly on social networks. This information carries astonishing details of daily activities ranging from urban mobility and tourism behavior, to emotions and interests. The largest social network nowadays is Facebook, which in December 2015 had incredible 1.31 billion mobile active users, 4.5 billion “likes” generated daily. In addition, every 60 seconds 510 comments are posted, 293, 000 statuses are updated, and 136,000 photos are uploaded1. This flood of data has brought great opportunities to discover individual and collective preferences, and use this information to offer services to meet people’s needs, such as recommending relevant and interesting items (e.g. news, places, movies). Furthermore, it is now possible to exploit the experiences of groups of people as a collective behavior so as to augment the experience of other. This latter illustrates the important scenario where the discovery of collective behavioral patterns, the wisdom-of-the-crowd, may enrich the experience of individual users. In this light, this thesis has the objective of taking advantage of the wisdom of the crowd in order to better understand human mobility behavior so as to achieve the final purpose of supporting users (e.g. people) by providing intelligent and effective recommendations. We accomplish this objective by following three main lines of investigation as discussed below. In the first line of investigation we conduct a study of human mobility using the wisdom-of- the-crowd, culminating in the development of an analytical framework that offers a methodology to understand how the points of interest (PoIs) in a city are related to each other on the basis of the displacement of people. We experimented our methodology by using the PoI network topology to identify new classes of points of interest based on visiting patterns, spatial displacement from one PoI to another as well as popularity of the PoIs. Important relationships between PoIs are mined by discovering communities (groups) of PoIs that are closely related to each other based on user movements, where different analytical metrics are proposed to better understand such a perspective. The second line of investigation exploits the wisdom-of-the-crowd collected through user-generated content to recommend itineraries in tourist cities. To this end, we propose an unsupervised framework, called TripBuilder, that leverages large collections of Flickr photos, as the wisdom-of- the-crowd, and points of interest from Wikipedia in order to support tourists in planning their visits to the cities. We extensively experimented our framework using real data, thus demonstrating the effectiveness and efficiency of the proposal. Based on the theoretical framework, we designed and developed a platform encompassing the main features required to create personalized sightseeing tours. This platform has received significant interest within the research community, since it is recognized as crucial to understand the needs of tourists when they are planning a visit to a new city. Consequently this led to outstanding scientific results. In the third line of investigation, we exploit the wisdom-of-the-crowd to leverage recommendations of groups of people (e.g. friends) who can enjoy an item (e.g. restaurant) together. We propose GroupFinder to address the novel user-item group formation problem aimed at recommending the best group of friends for a pair. The proposal combines user-item relevance information with the user’s social network (ego network), while trying to balance the satisfaction of all the members of the group for the item with the intra-group relationships. Algorithmic solutions are proposed and experimented in the location-based recommendation domain by using four publicly available Location-Based Social Network (LBSN) datasets, showing that our solution is effective and outperforms strong baselines

    Exploring attributes, sequences, and time in Recommender Systems: From classical to Point-of-Interest recommendation

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingenieria Informática. Fecha de lectura: 08-07-2021Since the emergence of the Internet and the spread of digital communications throughout the world, the amount of data stored on the Web has been growing exponentially. In this new digital era, a large number of companies have emerged with the purpose of ltering the information available on the web and provide users with interesting items. The algorithms and models used to recommend these items are called Recommender Systems. These systems are applied to a large number of domains, from music, books, or movies to dating or Point-of-Interest (POI), which is an increasingly popular domain where users receive recommendations of di erent places when they arrive to a city. In this thesis, we focus on exploiting the use of contextual information, especially temporal and sequential data, and apply it in novel ways in both traditional and Point-of-Interest recommendation. We believe that this type of information can be used not only for creating new recommendation models but also for developing new metrics for analyzing the quality of these recommendations. In one of our rst contributions we propose di erent metrics, some of them derived from previously existing frameworks, using this contextual information. Besides, we also propose an intuitive algorithm that is able to provide recommendations to a target user by exploiting the last common interactions with other similar users of the system. At the same time, we conduct a comprehensive review of the algorithms that have been proposed in the area of POI recommendation between 2011 and 2019, identifying the common characteristics and methodologies used. Once this classi cation of the algorithms proposed to date is completed, we design a mechanism to recommend complete routes (not only independent POIs) to users, making use of reranking techniques. In addition, due to the great di culty of making recommendations in the POI domain, we propose the use of data aggregation techniques to use information from di erent cities to generate POI recommendations in a given target city. In the experimental work we present our approaches on di erent datasets belonging to both classical and POI recommendation. The results obtained in these experiments con rm the usefulness of our recommendation proposals, in terms of ranking accuracy and other dimensions like novelty, diversity, and coverage, and the appropriateness of our metrics for analyzing temporal information and biases in the recommendations producedDesde la aparici on de Internet y la difusi on de las redes de comunicaciones en todo el mundo, la cantidad de datos almacenados en la red ha crecido exponencialmente. En esta nueva era digital, han surgido un gran n umero de empresas con el objetivo de ltrar la informaci on disponible en la red y ofrecer a los usuarios art culos interesantes. Los algoritmos y modelos utilizados para recomendar estos art culos reciben el nombre de Sistemas de Recomendaci on. Estos sistemas se aplican a un gran n umero de dominios, desde m usica, libros o pel culas hasta las citas o los Puntos de Inter es (POIs, en ingl es), un dominio cada vez m as popular en el que los usuarios reciben recomendaciones de diferentes lugares cuando llegan a una ciudad. En esta tesis, nos centramos en explotar el uso de la informaci on contextual, especialmente los datos temporales y secuenciales, y aplicarla de forma novedosa tanto en la recomendaci on cl asica como en la recomendaci on de POIs. Creemos que este tipo de informaci on puede utilizarse no s olo para crear nuevos modelos de recomendaci on, sino tambi en para desarrollar nuevas m etricas para analizar la calidad de estas recomendaciones. En una de nuestras primeras contribuciones proponemos diferentes m etricas, algunas derivadas de formulaciones previamente existentes, utilizando esta informaci on contextual. Adem as, proponemos un algoritmo intuitivo que es capaz de proporcionar recomendaciones a un usuario objetivo explotando las ultimas interacciones comunes con otros usuarios similares del sistema. Al mismo tiempo, realizamos una revisi on exhaustiva de los algoritmos que se han propuesto en el a mbito de la recomendaci o n de POIs entre 2011 y 2019, identi cando las caracter sticas comunes y las metodolog as utilizadas. Una vez realizada esta clasi caci on de los algoritmos propuestos hasta la fecha, dise~namos un mecanismo para recomendar rutas completas (no s olo POIs independientes) a los usuarios, haciendo uso de t ecnicas de reranking. Adem as, debido a la gran di cultad de realizar recomendaciones en el ambito de los POIs, proponemos el uso de t ecnicas de agregaci on de datos para utilizar la informaci on de diferentes ciudades y generar recomendaciones de POIs en una determinada ciudad objetivo. En el trabajo experimental presentamos nuestros m etodos en diferentes conjuntos de datos tanto de recomendaci on cl asica como de POIs. Los resultados obtenidos en estos experimentos con rman la utilidad de nuestras propuestas de recomendaci on en t erminos de precisi on de ranking y de otras dimensiones como la novedad, la diversidad y la cobertura, y c omo de apropiadas son nuestras m etricas para analizar la informaci on temporal y los sesgos en las recomendaciones producida

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Location Analytics for Location-Based Social Networks

    Get PDF
    • …
    corecore