1,357 research outputs found

    A Personalized Commodities Recommendation Procedure and Algorithm Based on Association Rule Mining

    Get PDF
    The double-quick growth of EB has caused commodities overload, where our customers are not longer able to efficiently choose the products adapt to them. In order to overcome the situation that both companies and customers are facing, we present a personalized recommendation, although several recommendation systems which may have some disadvantages have been developed. In this paper, we focus on the association rule mining by EFFICIENT algorithm which can simple discovery rapidly the all association rules without any information loss. The EFFICIENT algorithm which comes of the conventional Aprior algorithm integrates the notions of fast algorithm and predigested algorithm to find the interesting association rules in a given transaction data sets. We believe that the procedure should be accepted, and experiment with real-life databases show that the proposed algorithm is efficient one

    Improving Web Recommendations Using Web Usage Mining and Web Semantics

    Get PDF
    This project addresses the topic of improving web recommendations. With the immense increase in the number of websites and web pages on the internet, the issue of suggesting users with the web pages in the area of their interest needs to be addressed as best as possible. Various approaches have been proposed over the years by many researchers and each of them has taken the solution of creating personalized web recommendations a step ahead. Yet, owing to the large possibilities of further improvement, the system proposed in this report takes generating web recommendations one more step ahead. The proposed system uses the information from web usage mining, web semantics and time spent on web pages to improve the recommendations

    Hybrid Recommender Systems: A Systematic Literature Review

    Get PDF
    Recommender systems are software tools used to generate and provide suggestions for items and other entities to the users by exploiting various strategies. Hybrid recommender systems combine two or more recommendation strategies in different ways to benefit from their complementary advantages. This systematic literature review presents the state of the art in hybrid recommender systems of the last decade. It is the first quantitative review work completely focused in hybrid recommenders. We address the most relevant problems considered and present the associated data mining and recommendation techniques used to overcome them. We also explore the hybridization classes each hybrid recommender belongs to, the application domains, the evaluation process and proposed future research directions. Based on our findings, most of the studies combine collaborative filtering with another technique often in a weighted way. Also cold-start and data sparsity are the two traditional and top problems being addressed in 23 and 22 studies each, while movies and movie datasets are still widely used by most of the authors. As most of the studies are evaluated by comparisons with similar methods using accuracy metrics, providing more credible and user oriented evaluations remains a typical challenge. Besides this, newer challenges were also identified such as responding to the variation of user context, evolving user tastes or providing cross-domain recommendations. Being a hot topic, hybrid recommenders represent a good basis with which to respond accordingly by exploring newer opportunities such as contextualizing recommendations, involving parallel hybrid algorithms, processing larger datasets, etc

    Application of the Markov Chain Method in a Health Portal Recommendation System

    Get PDF
    This study produced a recommendation system that can effectively recommend items on a health portal. Toward this aim, a transaction log that records users’ traversal activities on the Medical College of Wisconsin’s HealthLink, a health portal with a subject directory, was utilized and investigated. This study proposed a mixed-method that included the transaction log analysis method, the Markov chain analysis method, and the inferential analysis method. The transaction log analysis method was applied to extract users’ traversal activities from the log. The Markov chain analysis method was adopted to model users’ traversal activities and then generate recommendation lists for topics, articles, and Q&A items on the health portal. The inferential analysis method was applied to test whether there are any correlations between recommendation lists generated by the proposed recommendation system and recommendation lists ranked by experts. The topics selected for this study are Infections, the Heart, and Cancer. These three topics were the three most viewed topics in the portal. The findings of this study revealed the consistency between the recommendation lists generated from the proposed system and the lists ranked by experts. At the topic level, two topic recommendation lists generated from the proposed system were consistent with the lists ranked by experts, while one topic recommendation list was highly consistent with the list ranked by experts. At the article level, one article recommendation list generated from the proposed system was consistent with the list ranked by experts, while 14 article recommendation lists were highly consistent with the lists ranked by experts. At the Q&A item level, three Q&A item recommendation lists generated from the proposed system were consistent with the lists ranked by experts, while 12 Q&A item recommendation lists were highly consistent with the lists ranked by experts. The findings demonstrated the significance of users’ traversal data extracted from the transaction log. The methodology applied in this study proposed a systematic approach to generating the recommendation systems for other similar portals. The outcomes of this study can facilitate users’ navigation, and provide a new method for building a recommendation system that recommends items at three levels: the topic level, the article level, and the Q&A item level

    Recommending on graphs: a comprehensive review from a data perspective

    Full text link
    Recent advances in graph-based learning approaches have demonstrated their effectiveness in modelling users' preferences and items' characteristics for Recommender Systems (RSS). Most of the data in RSS can be organized into graphs where various objects (e.g., users, items, and attributes) are explicitly or implicitly connected and influence each other via various relations. Such a graph-based organization brings benefits to exploiting potential properties in graph learning (e.g., random walk and network embedding) techniques to enrich the representations of the user and item nodes, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of Graph Learning-based Recommender Systems (GLRSs). Specifically, we start from a data-driven perspective to systematically categorize various graphs in GLRSs and analyze their characteristics. Then, we discuss the state-of-the-art frameworks with a focus on the graph learning module and how they address practical recommendation challenges such as scalability, fairness, diversity, explainability and so on. Finally, we share some potential research directions in this rapidly growing area.Comment: Accepted by UMUA

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace

    Text-based Sentiment Analysis and Music Emotion Recognition

    Get PDF
    Nowadays, with the expansion of social media, large amounts of user-generated texts like tweets, blog posts or product reviews are shared online. Sentiment polarity analysis of such texts has become highly attractive and is utilized in recommender systems, market predictions, business intelligence and more. We also witness deep learning techniques becoming top performers on those types of tasks. There are however several problems that need to be solved for efficient use of deep neural networks on text mining and text polarity analysis. First of all, deep neural networks are data hungry. They need to be fed with datasets that are big in size, cleaned and preprocessed as well as properly labeled. Second, the modern natural language processing concept of word embeddings as a dense and distributed text feature representation solves sparsity and dimensionality problems of the traditional bag-of-words model. Still, there are various uncertainties regarding the use of word vectors: should they be generated from the same dataset that is used to train the model or it is better to source them from big and popular collections that work as generic text feature representations? Third, it is not easy for practitioners to find a simple and highly effective deep learning setup for various document lengths and types. Recurrent neural networks are weak with longer texts and optimal convolution-pooling combinations are not easily conceived. It is thus convenient to have generic neural network architectures that are effective and can adapt to various texts, encapsulating much of design complexity. This thesis addresses the above problems to provide methodological and practical insights for utilizing neural networks on sentiment analysis of texts and achieving state of the art results. Regarding the first problem, the effectiveness of various crowdsourcing alternatives is explored and two medium-sized and emotion-labeled song datasets are created utilizing social tags. One of the research interests of Telecom Italia was the exploration of relations between music emotional stimulation and driving style. Consequently, a context-aware music recommender system that aims to enhance driving comfort and safety was also designed. To address the second problem, a series of experiments with large text collections of various contents and domains were conducted. Word embeddings of different parameters were exercised and results revealed that their quality is influenced (mostly but not only) by the size of texts they were created from. When working with small text datasets, it is thus important to source word features from popular and generic word embedding collections. Regarding the third problem, a series of experiments involving convolutional and max-pooling neural layers were conducted. Various patterns relating text properties and network parameters with optimal classification accuracy were observed. Combining convolutions of words, bigrams, and trigrams with regional max-pooling layers in a couple of stacks produced the best results. The derived architecture achieves competitive performance on sentiment polarity analysis of movie, business and product reviews. Given that labeled data are becoming the bottleneck of the current deep learning systems, a future research direction could be the exploration of various data programming possibilities for constructing even bigger labeled datasets. Investigation of feature-level or decision-level ensemble techniques in the context of deep neural networks could also be fruitful. Different feature types do usually represent complementary characteristics of data. Combining word embedding and traditional text features or utilizing recurrent networks on document splits and then aggregating the predictions could further increase prediction accuracy of such models
    • …
    corecore