384 research outputs found

    Inventory Management of Platelets in Hospitals: Optimal Inventory Policy for Perishable Products with Emergency Replenishments

    Get PDF
    Platelets are short-life blood components used in hospital blood transfusion centers. Excluding time for transportation, testing, and arrangement, clinically transfusable platelets have a mere three-day life-span. This paper analyzes a periodic review inventory system for such perishable products under two replenishment modes. Regular orders are placed at the beginning of a cycle. Within the cycle, the manager has the option of placing an emergency order, characterized by an order-up-to level policy. We prove the existence and uniqueness of an optimal policy that minimizes the expected cost. We then derive the necessary and sufficient conditions for the policy, based on which a heuristic algorithm is developed. A numerical illustration and a sensitivity analysis are provided, along with managerial insights. The numerical results show that, unlike typical inventory problems, the total expected cost is sensitive to the regular order policy. It also shows that the optimal policy is sensitive to changes in the expected demand, suggesting to decision makers the significance of having an accurate demand forecast

    Multilocation Inventory Systems With Centralized Information.

    Get PDF
    The management of multi-echelon inventory systems has been both an important and challenging research area for many years. The rapid advance in information technology and the emphasis on integrated supply chain management have new implications for the successful operation of distribution systems. This research focuses on the study of some fundamental issues related to the operation of a multilocation inventory system with centralized information. First, we do a comparative analysis to evaluate the overall performance of individual versus centralized ordering policies for a multi-store distribution system where centralized information is available. This study integrates the existing research and clarifies one of the fundamental questions facing inventory managers today: whether or not ordering decisions should be centralized. Next, we consider a multi-store distribution system where emergency transshipments are permitted among these stores. Based on some simplifying assumptions, we develop an integrated model with a joint consideration of inventory and transshipment components. An approximately optimal (s, S) policy is obtained through a dynamic programming technique. This ordering policy is then compared with a simplified policy that assumes free and instantaneous transshipments. We also examine the relative performance of base stock policies for a centralized-ordering distribution system. Numerical studies are provided to give general guidelines for use of the policies

    Inventory control for point-of-use locations in hospitals

    Get PDF
    Most inventory management systems at hospital departments are characterised by lost sales, periodic reviews with short lead times, and limited storage capacity. We develop two types of exact models that deal with all these characteristics. In a capacity model, the service level is maximised subject to a capacity restriction, and in a service model the required capacity is minimised subject to a service level restriction. We also formulate approximation models applicable for any lost-sales inventory system (cost objective, no lead time restrictions etc). For the capacity model, we develop a simple inventory rule to set the reorder levels and order quantities. Numerical results for this inventory rule show an average deviation of 1% from the optimal service levels. We also embed the single-item models in a multi-item system. Furthermore, we compare the performance of fixed order size replenishment policies and (R, s, S) policies

    Real-time Allocation Decisions in Multi-echelon Inventory Control

    Get PDF
    Inventory control is a crucial activity for many companies. Given the recent advances in information technology, there have never been greater opportunities for coordinated inventory control across supply chain facilities. But how do we design efficient control methods and policies that take advantage of the detailed information that is now becoming available? This doctoral thesis investigates these issues within the field of inventory control theory. The objective of the research is: To develop mathematical models and policies for efficient control and increased understanding of stochastic multi-echelon inventory systems, with a focus on allocation decisions and the use of real-time information. This thesis is based on five scientific papers which are preceded by a summarizing introduction. The papers address different types of inventory distribution systems, all consisting of a central stocking facility that supplies an arbitrary number of local stocking facilities (referred to as retailers). The retailers face stochastic end customer demand. The systems are characterized by the presence of real-time inventory information, including continuously updated information on the current inventory levels at different facilities and on the locations of outstanding orders. In Paper I and Paper II we derive and evaluate different decision rules for stock allocation (known as allocation policies) for a central warehouse which applies a time based shipment consolidation strategy. The allocation policy determines how the central warehouse should distribute its stock among different retailers in case of shortages. New allocation policies that utilize real-time information are compared to the commonly used First Come - First Served policy which requires less information. In Paper III we shift focus to the delivery policy at a central warehouse which supplies multiple retailers that order in batches. When the central warehouse cannot satisfy an entire retailer order immediately, the delivery policy determines if the order should be shipped in several parts or in its entirety when all items are available. We investigate the value of using a new delivery policy that uses real-time information on when replenishments will arrive at the central warehouse. The information is used to determine the best course of action for each order placed by the retailers. We also study how to allocate safety stocks to all facilities in the system given this new policy. In Paper IV and Paper V we consider a system where retailers may receive emergency shipments from a support warehouse in combination with regular replenishments from a central warehouse/outside supplier. We investigate how safety stocks should be allocated between the retailers and the support warehouse. Furthermore, we evaluate the benefits of tracking orders in real time and using this information in the decision whether or not to request an emergency shipment

    Lateral transshipment of slow moving critical medical items

    Get PDF
    This research studies lateral transshipment of critical medical items that have low demands. Due to the high prices of medical items and their limited shelf lives, the expirations contribute significantly to the current prohibitively high cost of the healthcare system. Lateral transshipment between hospitals in a medical system provides opportunities to reduce the expiration costs. This paper studies the decision rule for lateral transshipment in a two-hospital system and extends the rule for the multiple-hospital cases. The decision rule takes the myopic best action by assuming no transshipments will be performed in the future. Numerical experiments demonstrate significant cost savings and the decision rule has a small gap from the upper bound of the total saving. The savings are more considerable when the difference of demand rates at different locations is large and the life time of the medical item is not too long or too short

    A Continuous Review Inventory System with Lost Sales and Emergency Orders

    Get PDF
    We analyze a continuous review lost sales inventory system with two types of orders—regular and emergency. The regular order has a stochastic lead time and is placed with the cheapest acceptable supplier. The emergency order has a deterministic lead time is placed with a local supplier who has a higher price. The emergency order is not always filled since the supplier may not have the ability to provide the order on an emergency basis at all times. This emergency order has a higher cost per item and has a known probability of being filled. The total costs for this system are compared to a system without emergency placement of orders. This paper provides managers with a tool to assess when dual sourcing is cost optimal by comparing the single sourcing and dual sourcing models

    The capacitated multi-echelon inventory system with serial structure. 1. The 'push ahead'-effect

    Get PDF
    This paper considers a multi-echelon, periodic review inventory model with discrete demand. We assume finite capacities on various production/order sizes and backordering of excess demand. We show that under the average cost criterion the optimal order strategy may be characterized by a so-called 'push ahead'-effect. Further we shall find that a modified base-stock policy approximates the optimal policy quite well

    Optimal transshipments and reassignments under periodic orcyclic holding cost accounting

    Get PDF
    Cataloged from PDF version of article.In a centrally managed system, inventory at a retailer can be transshipped to a stocked-out retailer to meet demand. As the inventory at the former retailer may be demanded by future customers of that retailer and transshipment time/cost is non-negligible, it can be more profitable to not transship in some situations. When unsatisfied demand is backordered, reassignment of inventory to a previously backordered demand can perhaps become profitable as demand uncertainty resolves over time. Despite this intuition, we prove that no reassignments are necessary for cost optimality under periodic holding cost accounting in a two-retailer system. This remains valid for multi-retailer systems according to numerical analyses. When holding costs are accounted for only at the end of each replenishment cycle, reassignments are necessary for optimality but insignificant in reducing the total cost. In most instances tested, the decrease in total cost from reassignments is below 2% for end of cycle holding cost accounting. These results simplify transshipment policies and facilitate finding good policies in both implementation and future studies, as reassignments can be omitted from consideration in optimization models under periodic holding cost accounting and in approximation models under cyclical cost accounting
    • …
    corecore