114,375 research outputs found

    MaSiF: Machine learning guided auto-tuning of parallel skeletons

    Get PDF

    Analysis, classification and comparison of scheduling techniques for software transactional memories

    Get PDF
    Transactional Memory (TM) is a practical programming paradigm for developing concurrent applications. Performance is a critical factor for TM implementations, and various studies demonstrated that specialised transaction/thread scheduling support is essential for implementing performance-effective TM systems. After one decade of research, this article reviews the wide variety of scheduling techniques proposed for Software Transactional Memories. Based on peculiarities and differences of the adopted scheduling strategies, we propose a classification of the existing techniques, and we discuss the specific characteristics of each technique. Also, we analyse the results of previous evaluation and comparison studies, and we present the results of a new experimental study encompassing techniques based on different scheduling strategies. Finally, we identify potential strengths and weaknesses of the different techniques, as well as the issues that require to be further investigated

    Domain knowledge specification for energy tuning

    Get PDF
    To overcome the challenges of energy consumption of HPC systems, the European Union Horizon 2020 READEX (Runtime Exploitation of Application Dynamism for Energy-efficient Exascale computing) project uses an online auto-tuning approach to improve energy efficiency of HPC applications. The READEX methodology pre-computes optimal system configurations at design-time, such as the CPU frequency, for instances of program regions and switches at runtime to the configuration given in the tuning model when the region is executed. READEX goes beyond previous approaches by exploiting dynamic changes of a region's characteristics by leveraging region and characteristic specific system configurations. While the tool suite supports an automatic approach, specifying domain knowledge such as the structure and characteristics of the application and application tuning parameters can significantly help to create a more refined tuning model. This paper presents the means available for an application expert to provide domain knowledge and presents tuning results for some benchmarks.Web of Science316art. no. E465

    Assessing hyper parameter optimization and speedup for convolutional neural networks

    Get PDF
    The increased processing power of graphical processing units (GPUs) and the availability of large image datasets has fostered a renewed interest in extracting semantic information from images. Promising results for complex image categorization problems have been achieved using deep learning, with neural networks comprised of many layers. Convolutional neural networks (CNN) are one such architecture which provides more opportunities for image classification. Advances in CNN enable the development of training models using large labelled image datasets, but the hyper parameters need to be specified, which is challenging and complex due to the large number of parameters. A substantial amount of computational power and processing time is required to determine the optimal hyper parameters to define a model yielding good results. This article provides a survey of the hyper parameter search and optimization methods for CNN architectures
    corecore