645 research outputs found

    Parallel Tempering Simulation of the three-dimensional Edwards-Anderson Model with Compact Asynchronous Multispin Coding on GPU

    Get PDF
    Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. One of the obstacles in the Monte Carlo simulation of random frustrated systems is their long relaxation time making an efficient parallel implementation on state-of-the-art computation platforms highly desirable. The Graphics Processing Unit (GPU) is such a platform that provides an opportunity to significantly enhance the computational performance and thus gain new insight into this problem. In this paper, we present optimization and tuning approaches for the CUDA implementation of the spin glass simulation on GPUs. We discuss the integration of various design alternatives, such as GPU kernel construction with minimal communication, memory tiling, and look-up tables. We present a binary data format, Compact Asynchronous Multispin Coding (CAMSC), which provides an additional 28.4%28.4\% speedup compared with the traditionally used Asynchronous Multispin Coding (AMSC). Our overall design sustains a performance of 33.5 picoseconds per spin flip attempt for simulating the three-dimensional Edwards-Anderson model with parallel tempering, which significantly improves the performance over existing GPU implementations.Comment: 15 pages, 18 figure

    q-State Potts model metastability study using optimized GPU-based Monte Carlo algorithms

    Get PDF
    We implemented a GPU based parallel code to perform Monte Carlo simulations of the two dimensional q-state Potts model. The algorithm is based on a checkerboard update scheme and assigns independent random numbers generators to each thread. The implementation allows to simulate systems up to ~10^9 spins with an average time per spin flip of 0.147ns on the fastest GPU card tested, representing a speedup up to 155x, compared with an optimized serial code running on a high-end CPU. The possibility of performing high speed simulations at large enough system sizes allowed us to provide a positive numerical evidence about the existence of metastability on very large systems based on Binder's criterion, namely, on the existence or not of specific heat singularities at spinodal temperatures different of the transition one.Comment: 30 pages, 7 figures. Accepted in Computer Physics Communications. code available at: http://www.famaf.unc.edu.ar/grupos/GPGPU/Potts/CUDAPotts.htm

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU
    • …
    corecore