1,418 research outputs found

    A Holistic Approach to Log Data Analysis in High-Performance Computing Systems: The Case of IBM Blue Gene/Q

    Get PDF
    The complexity and cost of managing high-performance computing infrastructures are on the rise. Automating management and repair through predictive models to minimize human interventions is an attempt to increase system availability and contain these costs. Building predictive models that are accurate enough to be useful in automatic management cannot be based on restricted log data from subsystems but requires a holistic approach to data analysis from disparate sources. Here we provide a detailed multi-scale characterization study based on four datasets reporting power consumption, temperature, workload, and hardware/software events for an IBM Blue Gene/Q installation. We show that the system runs a rich parallel workload, with low correlation among its components in terms of temperature and power, but higher correlation in terms of events. As expected, power and temperature correlate strongly, while events display negative correlations with load and power. Power and workload show moderate correlations, and only at the scale of components. The aim of the study is a systematic, integrated characterization of the computing infrastructure and discovery of correlation sources and levels to serve as basis for future predictive modeling efforts.Comment: 12 pages, 7 Figure

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    GHOST: Building blocks for high performance sparse linear algebra on heterogeneous systems

    Get PDF
    While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The "General, Hybrid, and Optimized Sparse Toolkit" (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the "MPI+X" paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.Comment: 32 pages, 11 figure

    Autonomous management of cost, performance, and resource uncertainty for migration of applications to infrastructure-as-a-service (IaaS) clouds

    Get PDF
    2014 Fall.Includes bibliographical references.Infrastructure-as-a-Service (IaaS) clouds abstract physical hardware to provide computing resources on demand as a software service. This abstraction leads to the simplistic view that computing resources are homogeneous and infinite scaling potential exists to easily resolve all performance challenges. Adoption of cloud computing, in practice however, presents many resource management challenges forcing practitioners to balance cost and performance tradeoffs to successfully migrate applications. These challenges can be broken down into three primary concerns that involve determining what, where, and when infrastructure should be provisioned. In this dissertation we address these challenges including: (1) performance variance from resource heterogeneity, virtualization overhead, and the plethora of vaguely defined resource types; (2) virtual machine (VM) placement, component composition, service isolation, provisioning variation, and resource contention for multitenancy; and (3) dynamic scaling and resource elasticity to alleviate performance bottlenecks. These resource management challenges are addressed through the development and evaluation of autonomous algorithms and methodologies that result in demonstrably better performance and lower monetary costs for application deployments to both public and private IaaS clouds. This dissertation makes three primary contributions to advance cloud infrastructure management for application hosting. First, it includes design of resource utilization models based on step-wise multiple linear regression and artificial neural networks that support prediction of better performing component compositions. The total number of possible compositions is governed by Bell's Number that results in a combinatorially explosive search space. Second, it includes algorithms to improve VM placements to mitigate resource heterogeneity and contention using a load-aware VM placement scheduler, and autonomous detection of under-performing VMs to spur replacement. Third, it describes a workload cost prediction methodology that harnesses regression models and heuristics to support determination of infrastructure alternatives that reduce hosting costs. Our methodology achieves infrastructure predictions with an average mean absolute error of only 0.3125 VMs for multiple workloads
    • …
    corecore