4,177 research outputs found

    SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven Generative Adversarial Networks

    Full text link
    Computed Tomography (CT) is a medical imaging modality that can generate more informative 3D images than 2D X-rays. However, this advantage comes at the expense of more radiation exposure, higher costs, and longer acquisition time. Hence, the reconstruction of 3D CT images using a limited number of 2D X-rays has gained significant importance as an economical alternative. Nevertheless, existing methods primarily prioritize minimizing pixel/voxel-level intensity discrepancies, often neglecting the preservation of textural details in the synthesized images. This oversight directly impacts the quality of the reconstructed images and thus affects the clinical diagnosis. To address the deficits, this paper presents a new self-driven generative adversarial network model (SdCT-GAN), which is motivated to pay more attention to image details by introducing a novel auto-encoder structure in the discriminator. In addition, a Sobel Gradient Guider (SGG) idea is applied throughout the model, where the edge information from the 2D X-ray image at the input can be integrated. Moreover, LPIPS (Learned Perceptual Image Patch Similarity) evaluation metric is adopted that can quantitatively evaluate the fine contours and textures of reconstructed images better than the existing ones. Finally, the qualitative and quantitative results of the empirical studies justify the power of the proposed model compared to mainstream state-of-the-art baselines

    Content-Aware Image Restoration Techniques without Ground Truth and Novel Ideas to Image Reconstruction

    Get PDF
    In this thesis I will use state-of-the-art (SOTA) image denoising methods to denoise electron microscopy (EM) data. Then, I will present NoiseVoid a deep learning based self-supervised image denoising approach which is trained on single noisy observations. Eventually, I approach the missing wedge problem in tomography and introduce a novel image encoding, based on the Fourier transform which I am using to predict missing Fourier coefficients directly in Fourier space with Fourier Image Transformer (FIT). In the next paragraphs I will summarize the individual contributions briefly. Electron microscopy is the go to method for high-resolution images in biological research. Modern scanning electron microscopy (SEM) setups are used to obtain neural connectivity maps, allowing us to identify individual synapses. However, slow scanning speeds are required to obtain SEM images of sufficient quality. In (Weigert et al. 2018) the authors show, for fluorescence microscopy, how pairs of low- and high-quality images can be obtained from biological samples and use them to train content-aware image restoration (CARE) networks. Once such a network is trained, it can be applied to noisy data to restore high quality images. With SEM-CARE I present how this approach can be directly applied to SEM data, allowing us to scan the samples faster, resulting in 4040- to 5050-fold imaging speedups for SEM imaging. In structural biology cryo transmission electron microscopy (cryo TEM) is used to resolve protein structures and describe molecular interactions. However, missing contrast agents as well as beam induced sample damage (Knapek and Dubochet 1980) prevent acquisition of high quality projection images. Hence, reconstructed tomograms suffer from low signal-to-noise ratio (SNR) and low contrast, which makes post-processing of such data difficult and often has to be done manually. To facilitate down stream analysis and manual data browsing of cryo tomograms I present cryoCARE a Noise2Noise (Lehtinen et al. 2018) based denoising method which is able to restore high contrast, low noise tomograms from sparse-view low-dose tilt-series. An implementation of cryoCARE is publicly available as Scipion (de la Rosa-TrevĂ­n et al. 2016) plugin. Next, I will discuss the problem of self-supervised image denoising. With cryoCARE I exploited the fact that modern cryo TEM cameras acquire multiple low-dose images, hence the Noise2Noise (Lehtinen et al. 2018) training paradigm can be applied. However, acquiring multiple noisy observations is not always possible e.g. in live imaging, with old cryo TEM cameras or simply by lack of access to the used imaging system. In such cases we have to fall back to self-supervised denoising methods and with Noise2Void I present the first self-supervised neural network based image denoising approach. Noise2Void is also available as an open-source Python package and as a one-click solution in Fiji (Schindelin et al. 2012). In the last part of this thesis I present Fourier Image Transformer (FIT) a novel approach to image reconstruction with Transformer networks. I develop a novel 1D image encoding based on the Fourier transform where each prefix encodes the whole image at reduced resolution, which I call Fourier Domain Encoding (FDE). I use FIT with FDEs and present proof of concept for super-resolution and tomographic reconstruction with missing wedge correction. The missing wedge artefacts in tomographic imaging originate in sparse-view imaging. Sparse-view imaging is used to keep the total exposure of the imaged sample to a minimum, by only acquiring a limited number of projection images. However, tomographic reconstructions from sparse-view acquisitions are affected by missing wedge artefacts, characterized by missing wedges in the Fourier space and visible as streaking artefacts in real image space. I show that FITs can be applied to tomographic reconstruction and that they fill in missing Fourier coefficients. Hence, FIT for tomographic reconstruction solves the missing wedge problem at its source.:Contents Summary iii Acknowledgements v 1 Introduction 1 1.1 Scanning Electron Microscopy . . . . . . . . . . . . . . . . . . . . 3 1.2 Cryo Transmission Electron Microscopy . . . . . . . . . . . . . . . 4 1.2.1 Single Particle Analysis . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Cryo Tomography . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Tomographic Reconstruction . . . . . . . . . . . . . . . . . . . . . 8 1.4 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . 11 2 Denoising in Electron Microscopy 15 2.1 Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Supervised Image Restoration . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Training and Validation Loss . . . . . . . . . . . . . . . . 19 2.2.2 Neural Network Architectures . . . . . . . . . . . . . . . . 21 2.3 SEM-CARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 SEM-CARE Experiments . . . . . . . . . . . . . . . . . . 23 2.3.2 SEM-CARE Results . . . . . . . . . . . . . . . . . . . . . 25 2.4 Noise2Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 cryoCARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Restoration of cryo TEM Projections . . . . . . . . . . . . 27 2.5.2 Restoration of cryo TEM Tomograms . . . . . . . . . . . . 29 2.5.3 Automated Downstream Analysis . . . . . . . . . . . . . . 31 2.6 Implementations and Availability . . . . . . . . . . . . . . . . . . 32 2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7.1 Tasks Facilitated through cryoCARE . . . . . . . . . . . 33 3 Noise2Void: Self-Supervised Denoising 35 3.1 Probabilistic Image Formation . . . . . . . . . . . . . . . . . . . . 37 3.2 Receptive Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Noise2Void Training . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 41 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 Natural Images . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.2 Light Microscopy Data . . . . . . . . . . . . . . . . . . . . 44 3.4.3 Electron Microscopy Data . . . . . . . . . . . . . . . . . . 47 3.4.4 Errors and Limitations . . . . . . . . . . . . . . . . . . . . 48 3.5 Conclusion and Followup Work . . . . . . . . . . . . . . . . . . . 50 4 Fourier Image Transformer 53 4.1 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Attention Is All You Need . . . . . . . . . . . . . . . . . . 55 4.1.2 Fast-Transformers . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.3 Transformers in Computer Vision . . . . . . . . . . . . . . 57 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.1 Fourier Domain Encodings (FDEs) . . . . . . . . . . . . . 57 4.2.2 Fourier Coefficient Loss . . . . . . . . . . . . . . . . . . . . 59 4.3 FIT for Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.1 Super-Resolution Data . . . . . . . . . . . . . . . . . . . . 60 4.3.2 Super-Resolution Experiments . . . . . . . . . . . . . . . . 61 4.4 FIT for Tomography . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 Computed Tomography Data . . . . . . . . . . . . . . . . 64 4.4.2 Computed Tomography Experiments . . . . . . . . . . . . 66 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Conclusions and Outlook 7

    3D-surface reconstruction of cellular cryo-soft X-ray microscopy tomograms using semi-supervised deep learning

    Get PDF
    Cryo-soft X-ray tomography (cryo-SXT) is a powerful method to investigate the ultrastructure of cells, offering resolution in the tens of nm range and strong contrast for membranous structures without requirement for labeling or chemical fixation. The short acquisition time and the relatively large volumes acquired allow for fast acquisition of large amounts of tomographic image data. Segmentation of these data into accessible features is a necessary step in gaining biologically relevant information from cryo-soft X-ray tomograms. However, manual image segmentation still requires several orders of magnitude more time than data acquisition. To address this challenge, we have here developed an end-to-end automated 3D-segmentation pipeline based on semi-supervised deep learning. Our approach is suitable for high-throughput analysis of large amounts of tomographic data, while being robust when faced with limited manual annotations and variations in the tomographic conditions. We validate our approach by extracting three-dimensional information on cellular ultrastructure and by quantifying nanoscopic morphological parameters of filopodia in mammalian cells

    Universal architecture of bacterial chemoreceptor arrays

    Get PDF
    Chemoreceptors are key components of the high-performance signal transduction system that controls bacterial chemotaxis. Chemoreceptors are typically localized in a cluster at the cell pole, where interactions among the receptors in the cluster are thought to contribute to the high sensitivity, wide dynamic range, and precise adaptation of the signaling system. Previous structural and genomic studies have produced conflicting models, however, for the arrangement of the chemoreceptors in the clusters. Using whole-cell electron cryo-tomography, here we show that chemoreceptors of different classes and in many different species representing several major bacterial phyla are all arranged into a highly conserved, 12-nm hexagonal array consistent with the proposed “trimer of dimers” organization. The various observed lengths of the receptors confirm current models for the methylation, flexible bundle, signaling, and linker sub-domains in vivo. Our results suggest that the basic mechanism and function of receptor clustering is universal among bacterial species and was thus conserved during evolution

    Geometric analysis of macromolecule organization within cryo-electron tomograms

    No full text
    Cryo-electron tomography (CET) provides unprecedented views into the native cellular environment at molecular resolution. While subtomogram analysis yields high-resolution native structures of molecular complexes, it also determines the precise positions and orientations of these macromolecules within the cell. Analyzing the geometric relationships between adjacent macromolecules can offer structural insights into molecular interactions and identify supramolecular ensembles. However, computation..
    • …
    corecore