8 research outputs found

    Performance analysis of wormhole routing in multicomputer interconnection networks

    Get PDF
    Perhaps the most critical component in determining the ultimate performance potential of a multicomputer is its interconnection network, the hardware fabric supporting communication among individual processors. The message latency and throughput of such a network are affected by many factors of which topology, switching method, routing algorithm and traffic load are the most significant. In this context, the present study focuses on a performance analysis of k-ary n-cube networks employing wormhole switching, virtual channels and adaptive routing, a scenario of especial interest to current research. This project aims to build upon earlier work in two main ways: constructing new analytical models for k-ary n-cubes, and comparing the performance merits of cubes of different dimensionality. To this end, some important topological properties of k-ary n-cubes are explored initially; in particular, expressions are derived to calculate the number of nodes at/within a given distance from a chosen centre. These results are important in their own right but their primary significance here is to assist in the construction of new and more realistic analytical models of wormhole-routed k-ary n-cubes. An accurate analytical model for wormhole-routed k-ary n-cubes with adaptive routing and uniform traffic is then developed, incorporating the use of virtual channels and the effect of locality in the traffic pattern. New models are constructed for wormhole k-ary n-cubes, with the ability to simulate behaviour under adaptive routing and non-uniform communication workloads, such as hotspot traffic, matrix-transpose and digit-reversal permutation patterns. The models are equally applicable to unidirectional and bidirectional k-ary n-cubes and are significantly more realistic than any in use up to now. With this level of accuracy, the effect of each important network parameter on the overall network performance can be investigated in a more comprehensive manner than before. Finally, k-ary n-cubes of different dimensionality are compared using the new models. The comparison takes account of various traffic patterns and implementation costs, using both pin-out and bisection bandwidth as metrics. Networks with both normal and pipelined channels are considered. While previous similar studies have only taken account of network channel costs, our model incorporates router costs as well thus generating more realistic results. In fact the results of this work differ markedly from those yielded by earlier studies which assumed deterministic routing and uniform traffic, illustrating the importance of using accurate models to conduct such analyses

    High-Speed Message Routing Mechanisms for Massively Parallel Computers

    Get PDF
    現在超並列処理システム(MPP)は、伝統的なベクトルプロセッサやSIMDマシンの 牙城であった多くの分野に進出している。これらのシステムは、入手が容易な高性能 CPUの急激な進歩をうまく利用し、これらを数百~数千個接続して均質なマルチプ ロセッサのシステムとして構成したものである。しかし、これらのシステムの性能は、 現実の問題を解くときは必ずしも良くなく、常に公称の最高性能にははるかに及ばな いのが現状である。これらのシステムではプロセッサ間の通信はすべて相互結合網に よって行われるので、実現可能な最高性能を決める決定的な要素は相互結合網と、そ れに使われる通信機構である。 本論文ではMPPの相互結合網に使われる、効率的な通信機構を実現する2つの方法 を提案する。第1は「特急ルータ」の提案であり、これを相互結合網に用いた場合の 適合性を検註する。特急ルータは多重の単方向レジスタ挿入パスを利用して、時間 空間混合分割型ネットワークを実現するためのものである。異なる基数や次元数につ いて、特急ルータのスイッチ回路とバッファ回路の性能を予測するための正確なモデ ルを開発した。この結果、特急ルータは効率的な通信を行うためのすべての条件を満 足していることが確かめられた。さらに重要な点は、特急ルータはネットワークに故 障のある場合や、通信が錯綜する場合にも、低遅延時間、高スループットを損なわな い経路制御が行えることである。シミュレーションによって評価した特急ルータのの 性能は、これまでに発表された固定経路選択方式のルータより優れており、また他の 適応経路制御方式のルータに比べても、同程度あるいはそれを越えていることが確か められた。 第2は経路長制限方式のマルチキャスト通信の提案である。マルチキャスト通信は 多くの並列処理問題において速度向上に寄与する通信方式である。そこでワームホー ル通信方式において問題となるマルチキャスト通信におけるデッドロックの問題につ いて研究した。そしてこの問題を解決する方法として経路長制限方式のマルチキャス ト通信を提案し、この方式による通信性能をシミュレーションによって評価し、ユニ キャスト方式やマルチパス方式によるマルチキャスト通信の性能と比較した。その結 果、提案する経路長制限方式のマルチキャスト通信は、パリヤ同期のためのクラスタ へのマルチキャスト通信や、最近傍ノードへのマルチキャストや全ノードへの放送の 場合に、特に優れた解決法となることを明らかにした

    High-Speed Message Routing Mechanisms for Massively Parallel Computers

    Get PDF
    現在超並列処理システム(MPP)は、伝統的なベクトルプロセッサやSIMDマシンの 牙城であった多くの分野に進出している。これらのシステムは、入手が容易な高性能 CPUの急激な進歩をうまく利用し、これらを数百~数千個接続して均質なマルチプ ロセッサのシステムとして構成したものである。しかし、これらのシステムの性能は、 現実の問題を解くときは必ずしも良くなく、常に公称の最高性能にははるかに及ばな いのが現状である。これらのシステムではプロセッサ間の通信はすべて相互結合網に よって行われるので、実現可能な最高性能を決める決定的な要素は相互結合網と、そ れに使われる通信機構である。 本論文ではMPPの相互結合網に使われる、効率的な通信機構を実現する2つの方法 を提案する。第1は「特急ルータ」の提案であり、これを相互結合網に用いた場合の 適合性を検註する。特急ルータは多重の単方向レジスタ挿入パスを利用して、時間 空間混合分割型ネットワークを実現するためのものである。異なる基数や次元数につ いて、特急ルータのスイッチ回路とバッファ回路の性能を予測するための正確なモデ ルを開発した。この結果、特急ルータは効率的な通信を行うためのすべての条件を満 足していることが確かめられた。さらに重要な点は、特急ルータはネットワークに故 障のある場合や、通信が錯綜する場合にも、低遅延時間、高スループットを損なわな い経路制御が行えることである。シミュレーションによって評価した特急ルータのの 性能は、これまでに発表された固定経路選択方式のルータより優れており、また他の 適応経路制御方式のルータに比べても、同程度あるいはそれを越えていることが確か められた。 第2は経路長制限方式のマルチキャスト通信の提案である。マルチキャスト通信は 多くの並列処理問題において速度向上に寄与する通信方式である。そこでワームホー ル通信方式において問題となるマルチキャスト通信におけるデッドロックの問題につ いて研究した。そしてこの問題を解決する方法として経路長制限方式のマルチキャス ト通信を提案し、この方式による通信性能をシミュレーションによって評価し、ユニ キャスト方式やマルチパス方式によるマルチキャスト通信の性能と比較した。その結 果、提案する経路長制限方式のマルチキャスト通信は、パリヤ同期のためのクラスタ へのマルチキャスト通信や、最近傍ノードへのマルチキャストや全ノードへの放送の 場合に、特に優れた解決法となることを明らかにした

    Performance analysis of wormhole switched interconnection networks with virtual channels and finite buffers

    Get PDF
    An efficient interconnection network that provides high bandwidth and low latency interprocessor communication is critical to harness fully the computational power of large scale multicomputer. K-ary n-cube networks have been widely adopted in contemporary multicomputers due to their desirable properties. As such, the present study focuses on a performance analysis of K-ary n-cubes employing wormhole switching, virtual channels, and adaptive routing. The objective of this dissertation is twofold: to examine the performance of these networks, and to compare the performance merits of various topologies under different working conditions, by means of analytical modelling. Most existing analytical models reported in the literature have used a method originally proposed by Dally to capture the effects of virtual channels on network performance. This method is based on a Markov chain and it has been shown that its prediction accuracy degrades as traffic increases. Moreover, these studies have also constrained the buffer capacity to a single flit per channel, a simplifying assumption that has often been invoked to ease the derivation of the analytical models. Motivated by these observations, the first part of this research proposes a new method for modelling virtual channels, based on an M/G/1 queue. Owing to the generality of this method. Daily's method is shown to be a special case when the message service time is exponentially distributed. The second part of this research uses theoretical results of queuing systems to relax the single-flit buffer assumption. New analytical models are then proposed to capture the effects of deploying arbitrary size buffers on the performance of deterministic and adaptive routing algorithms. Simulation experiments reveal that results from the proposed analytical models are in close agreement with those obtained through simulation. Building on these new analytical models, the third part of this research compares the relative performance merits of K-ary n-cubes under different operating conditions, in the presence of finite size buffers and multiple virtual channels. Namely, the analysis first revisits the relative performance merits of the well-known 2D torus, 3D torus and hypercube under different implementation constraints. The analysis has then been extended to investigate the performance impact of arranging the total buffer space, allocated to a physical channel, into multiple virtual channels. Finally, the performance of adaptive routing has been compared to that of deterministic routing. While previous similar studies have only taken account of channel and router costs, the present analysis incorporates different intra-router delays, as well, and thus generates more realistic results. In fact, the results of this research differ notably from those reported in previous studies, illustrating the sensitivity of such studies to the level of detail, degree of accuracy and the realism of the assumptions adopted

    Performance evaluation of distributed crossbar switch hypermesh

    Get PDF
    The interconnection network is one of the most crucial components in any multicomputer as it greatly influences the overall system performance. Several recent studies have suggested that hypergraph networks, such as the Distributed Crossbar Switch Hypermesh (DCSH), exhibit superior topological and performance characteristics over many traditional graph networks, e.g. k-ary n-cubes. Previous work on the DCSH has focused on issues related to implementation and performance comparisons with existing networks. These comparisons have so far been confined to deterministic routing and unicast (one-to-one) communication. Using analytical models validated through simulation experiments, this thesis extends that analysis to include adaptive routing and broadcast communication. The study concentrates on wormhole switching, which has been widely adopted in practical multicomputers, thanks to its low buffering requirement and the reduced dependence of latency on distance under low traffic. Adaptive routing has recently been proposed as a means of improving network performance, but while the comparative evaluation of adaptive and deterministic routing has been widely reported in the literature, the focus has been on graph networks. The first part of this thesis deals with adaptive routing, developing an analytical model to measure latency in the DCSH, and which is used throughout the rest of the work for performance comparisons. Also, an investigation of different routing algorithms in this network is presented. Conventional k-ary n-cubes have been the underlying topology of contemporary multicomputers, but it is only recently that adaptive routing has been incorporated into such systems. The thesis studies the relative performance merits of the DCSH and k-ary n-cubes under adaptive routing strategy. The analysis takes into consideration real-world factors, such as router complexity and bandwidth constraints imposed by implementation technology. However, in any network, the routing of unicast messages is not the only factor in traffic control. In many situations (for example, parallel iterative algorithms, memory update and invalidation procedures in shared memory systems, global notification of network errors), there is a significant requirement for broadcast traffic. The DCSH, by virtue of its use of hypergraph links, can implement broadcast operations particularly efficiently. The second part of the thesis examines how the DCSH and k-ary n-cube performance is affected by the presence of a broadcast traffic component. In general, these studies demonstrate that because of their relatively high diameter, k-ary n-cubes perform poorly when message lengths are short. This is consistent with earlier more simplistic analyses which led to the proposal for the express-cube, an enhancement of the basic k-ary n-cube structure, which provides additional express channels, allowing messages to bypass groups of nodes along their paths. The final part of the thesis investigates whether this "partial bypassing" can compete with the "total bypassing" capability provided inherently by the DCSH topology

    Fault tolerant adaptive routing in multicomputer networks

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 149-152).by Thucydides Xanthopoulos.M.S

    Low-Memory Techniques for Routing and Fault-Tolerance on the Fat-Tree Topology

    Full text link
    Actualmente, los clústeres de PCs están considerados como una alternativa eficiente a la hora de construir supercomputadores en los que miles de nodos de computación se conectan mediante una red de interconexión. La red de interconexión tiene que ser diseñada cuidadosamente, puesto que tiene una gran influencia sobre las prestaciones globales del sistema. Dos de los principales parámetros de diseño de las redes de interconexión son la topología y el encaminamiento. La topología define la interconexión de los elementos de la red entre sí, y entre éstos y los nodos de computación. Por su parte, el encaminamiento define los caminos que siguen los paquetes a través de la red. Las prestaciones han sido tradicionalmente la principal métrica a la hora de evaluar las redes de interconexión. Sin embargo, hoy en día hay que considerar dos métricas adicionales: el coste y la tolerancia a fallos. Las redes de interconexión además de escalar en prestaciones también deben hacerlo en coste. Es decir, no sólo tienen que mantener su productividad conforme aumenta el tamaño de la red, sino que tienen que hacerlo sin incrementar sobremanera su coste. Por otra parte, conforme se incrementa el número de nodos en las máquinas de tipo clúster, la red de interconexión debe crecer en concordancia. Este incremento en el número de elementos de la red de interconexión aumenta la probabilidad de aparición de fallos, y por lo tanto, la tolerancia a fallos es prácticamente obligatoria para las redes de interconexión actuales. Esta tesis se centra en la topología fat-tree, ya que es una de las topologías más comúnmente usadas en los clústeres. El objetivo de esta tesis es aprovechar sus características particulares para proporcionar tolerancia a fallos y un algoritmo de encaminamiento capaz de equilibrar la carga de la red proporcionando una buena solución de compromiso entre las prestaciones y el coste.Gómez Requena, C. (2010). Low-Memory Techniques for Routing and Fault-Tolerance on the Fat-Tree Topology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8856Palanci
    corecore