39 research outputs found

    Design of a low power switched-capacitor pipeline analog-to-digital converter

    Get PDF
    An Analog to Digital Converter (ADC) is a circuit which converts an analog signal into digital signal. Real world is analog, and the data processed by the computer or by other signal processing systems is digital. Therefore, the need for ADCs is obvious. In this thesis, several novel designs used to improve ADCs operation speed and reduce ADC power consumption are proposed. First, a high speed switched source follower (SSF) sample and hold amplifier without feedthrough penalty is implemented and simulated. The SSF sample and hold amplifier can achieve 6 Bit resolution with sampling rate at 10Gs/s. Second, a novel rail-to-rail time domain comparator used in successive approximation register ADC (SAR ADC) is implemented and simulated. The simulation results show that the proposed SAR ADC can only consume 1.3 muW with a 0.7 V power supply. Finally, a prototype pipeline ADC is implemented and fabricated in an IBM 90nm CMOS process. The proposed design is validated using measurement on a fabricated silicon IC, and the proposed 10-bit ADC achieves a peak signal-to-noise- and-distortion-ratio (SNDR) of 47 dB. This SNDR translates to a figure of merit (FOM) of 2.6N/conversion-step with a 1.2 V power supply

    Design of Inverter Based CMOS Amplifiers in Deep Nanoscale Technologies

    Get PDF
    In this work, it is proposed a fully differential ring amplifier topology with a deadzone voltage created by a CMOS resistor with a biasing circuit to increase the robustness over PVT variations. The study focuses on analyzing the performance of the ring amplifier over process, temperature, and supply voltage variations, in order to guarantee a viable industrial employment in a 7 nm FinFET CMOS technology node for being used as residue amplifier in ADCs. A ring amplifier is a small modular amplifier, derived from a ring oscillator. It is simple enough that it can quickly be designed using only a few inverters, capacitors, and switches. It can amplify with rail-to-rail output swing, competently charge large capacitive loads using slew-based charging, and scale well in performance according to process trends. In typical process corner, a gain of 72 dB is achieved with a settling time of 150 ps. Throughout the study, the proposed topology is compared with others presented in literature showing better results over corners and presenting a faster response. The proposed topology isn’t yet suitable for industry use, because it presents one corner significantly slower than the rest, namely process corner FF 125 °C, and process corner FS -40 °C with a small oscillation throughout the entire amplification period. Nevertheless, it proved itself to be a promising technique, showing a high gain and a fast settling without oscillation phase, with room for improvement.Neste trabalho, é proposta uma topologia de ring amplifier com a deadzone a ser criada através de uma resistência CMOS com um circuito de polarização para aumentar a robustez para as variações PVT. O estudo foca-se em analisar a performance do ring amplifier nas variações de processo, temperatura e tensão de alimentação, de forma a garantir um uso viável em indústria na tecnologia de 7 nm FinFET CMOS, para ser usado como amplificador de resíduo em ADCs. Um ring amplifier é um pequeno amplificador modular, derivado do ring oscillator. É simples o suficiente para ser facilmente projetado usando apenas poucos inversores, condensadores e interruptores. Consegue amplificar com rail-to-rail output swing, carregar grandes cargas capacitivas com carregamento slew-based e escalar bem em termos de performance de acordo com o processo. No typical process corner, foi obtido um ganho de 72 dB com um tempo de estabilização de 150 ps. Durante o estudo, a topologia proposta é comparada com outras presentes na literatura mostrando melhores resultados over corners e apresentando uma resposta mais rápida. A topologia proposta ainda não está preparada para uso industrial uma vez que apresenta um corner significativamente mais lento que os restantes, nomeadamente, process corner FF 125 °C, e outro process corner, FS -40 °C, com uma pequena oscilação durante todo o período de amplificação. Todavia, provou ser uma técnica promissora, apresentando um ganho elevado e uma rápida estabilização sem fase de oscilação, com espaço para melhoria

    Impacts of Cmos Scaling on the Analog Design

    Get PDF
    The advancement of the CMOS fabrication process has pushed the CMOS transistor scaling to the sub-100nm node. While process fabrication and logic designers advocated CMOS scaling consistent with Moore's Law, circuit engineers are struggling with the high leakage current, low power supply, and high power consumption. For the analog circuit designer, things become even worse due to the loss in dynamic range.The objective of this research was to investigate the impacts of the CMOS scaling on the analog design and proposed analog scaling rule: the overdrive voltage should scale at the same rate or faster than the supply voltage to maintain a power settling product efficiency which is constant or improving. To avoid a power consumption penalty, the final specifications for the analog power supply will stall at a voltage of near 1.1V, with an overdrive voltage of 0.1V. Device thresholds must be limited to an approximate voltage 0.3V for analog designs. Due to the reducing self-gain of the transistor from the scaling, multistage OTA topologies should be adopted to achieve high gain and high bandwidth. Different OTA topologies were analyzed in close loop form and compared based on a power settling product efficiency criteria. The nested gain boosted cascode OTA topology was found to have the best efficiency under high supply voltage, high overdrive voltage or low supply voltage, low overdrive voltage. Finally, a 2V 20Msample/s 11-bit pipelined ADC was designed as an example to demonstrate the benefits of the nested cascode OTA application to low voltage pipelined ADC design. The size of the ADC stages was optimally scaled to achieve low power consumption. The full ADC was simulated on the behavior model level by using Matlab Simulink. Cadence simulations and the Peregrine 0.5um SOS device models were used to verify critical components of the ADC further demonstrating feasibility.Electrical Engineering Technolog

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    High-accuracy switched-capacitor techniques applied to filter and ADC design

    Get PDF

    Amplifier Design for a Pipeline ADC in 90nm Technology

    Get PDF
    This paper explains the choices taken for the design of two full differential operational amplifiers. These op amp have been designed for the third and the fifth stage of a pipelined A/D Converter. It shows also the solutions found to reach high gain, wide bandwidth and short settling time, without degrading too much the output swing. First the operational amplifier specification are extracted starting from the ADC architecture, then the issues related to the sub-micrometrical design are analysed; the different structures tested are then presented and the motivation of the final topology choice are shown. It presents then the op amp schematic implementation, the simulation results and the layout with the 90nm TSMC design ki

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step
    corecore