286 research outputs found

    Maintaining temporal consistency of discrete objects in soft real-time database systems

    Get PDF
    A real-time database system contains base data items which record and model a physical, real-world environment. For better decision support, base data items are summarized and correlated to derive views. These base data and views are accessed by application transactions to generate the ultimate actions taken by the system. As the environment changes, updates are applied to base data, which subsequently trigger view recomputations. There are thus three types of activities: Base data update, view recomputation, and transaction execution. In a real-time database system, two timing constraints need to be enforced. We require that transactions meet their deadlines (transaction timeliness) and read fresh data (data timeliness). In this paper, we define the concept of absolute and relative temporal consistency from the perspective of transactions for discrete data objects. We address the important issue of transaction scheduling among the three types of activities such that the two timing requirements can be met. We also discuss how a real-time database system should be designed to enforce different levels of temporal consistency.published_or_final_versio

    Transactional concurrency control for resource constrained applications

    Get PDF
    PhD ThesisTransactions have long been used as a mechanism for ensuring the consistency of databases. Databases, and associated transactional approaches, have always been an active area of research as different application domains and computing architectures have placed ever more elaborate requirements on shared data access. As transactions typically provide consistency at the expense of timeliness (abort/retry) and resource (duplicate shared data and locking), there has been substantial efforts to limit these two aspects of transactions while still satisfying application requirements. In environments where clients are geographically distant from a database the consistency/performance trade-off becomes acute as any retrieval of data over a network is not only expensive, but relatively slow compared to co-located client/database systems. Furthermore, for battery powered clients the increased overhead of transactions can also be viewed as a significant power overhead. However, for all their drawbacks transactions do provide the data consistency that is a requirement for many application types. In this Thesis we explore the solution space related to timely transactional systems for remote clients and centralised databases with a focus on providing a solution, that, when compared to other's work in this domain: (a) maintains consistency; (b) lowers latency; (c) improves throughput. To achieve this we revisit a technique first developed to decrease disk access times via local caching of state (for aborted transactions) to tackle the problems prevalent in real-time databases. We demonstrate that such a technique (rerun) allows a significant change in the typical structure of a transaction (one never before considered, even in rerun systems). Such a change itself brings significant performance success not only in the traditional rerun local database solution space, but also in the distributed solution space. A byproduct of our improvements also, one can argue, brings about a "greener" solution as less time coupled with improved throughput affords improved battery life for mobile devices

    Dynamic re-optimization techniques for stream processing engines and object stores

    Get PDF
    Large scale data storage and processing systems are strongly motivated by the need to store and analyze massive datasets. The complexity of a large class of these systems is rooted in their distributed nature, extreme scale, need for real-time response, and streaming nature. The use of these systems on multi-tenant, cloud environments with potential resource interference necessitates fine-grained monitoring and control. In this dissertation, we present efficient, dynamic techniques for re-optimizing stream-processing systems and transactional object-storage systems.^ In the context of stream-processing systems, we present VAYU, a per-topology controller. VAYU uses novel methods and protocols for dynamic, network-aware tuple-routing in the dataflow. We show that the feedback-driven controller in VAYU helps achieve high pipeline throughput over long execution periods, as it dynamically detects and diagnoses any pipeline-bottlenecks. We present novel heuristics to optimize overlays for group communication operations in the streaming model.^ In the context of object-storage systems, we present M-Lock, a novel lock-localization service for distributed transaction protocols on scale-out object stores to increase transaction throughput. Lock localization refers to dynamic migration and partitioning of locks across nodes in the scale-out store to reduce cross-partition acquisition of locks. The service leverages the observed object-access patterns to achieve lock-clustering and deliver high performance. We also present TransMR, a framework that uses distributed, transactional object stores to orchestrate and execute asynchronous components in amorphous data-parallel applications on scale-out architectures

    Performance assessment of real-time data management on wireless sensor networks

    Get PDF
    Technological advances in recent years have allowed the maturity of Wireless Sensor Networks (WSNs), which aim at performing environmental monitoring and data collection. This sort of network is composed of hundreds, thousands or probably even millions of tiny smart computers known as wireless sensor nodes, which may be battery powered, equipped with sensors, a radio transceiver, a Central Processing Unit (CPU) and some memory. However due to the small size and the requirements of low-cost nodes, these sensor node resources such as processing power, storage and especially energy are very limited. Once the sensors perform their measurements from the environment, the problem of data storing and querying arises. In fact, the sensors have restricted storage capacity and the on-going interaction between sensors and environment results huge amounts of data. Techniques for data storage and query in WSN can be based on either external storage or local storage. The external storage, called warehousing approach, is a centralized system on which the data gathered by the sensors are periodically sent to a central database server where user queries are processed. The local storage, in the other hand called distributed approach, exploits the capabilities of sensors calculation and the sensors act as local databases. The data is stored in a central database server and in the devices themselves, enabling one to query both. The WSNs are used in a wide variety of applications, which may perform certain operations on collected sensor data. However, for certain applications, such as real-time applications, the sensor data must closely reflect the current state of the targeted environment. However, the environment changes constantly and the data is collected in discreet moments of time. As such, the collected data has a temporal validity, and as time advances, it becomes less accurate, until it does not reflect the state of the environment any longer. Thus, these applications must query and analyze the data in a bounded time in order to make decisions and to react efficiently, such as industrial automation, aviation, sensors network, and so on. In this context, the design of efficient real-time data management solutions is necessary to deal with both time constraints and energy consumption. This thesis studies the real-time data management techniques for WSNs. It particularly it focuses on the study of the challenges in handling real-time data storage and query for WSNs and on the efficient real-time data management solutions for WSNs. First, the main specifications of real-time data management are identified and the available real-time data management solutions for WSNs in the literature are presented. Secondly, in order to provide an energy-efficient real-time data management solution, the techniques used to manage data and queries in WSNs based on the distributed paradigm are deeply studied. In fact, many research works argue that the distributed approach is the most energy-efficient way of managing data and queries in WSNs, instead of performing the warehousing. In addition, this approach can provide quasi real-time query processing because the most current data will be retrieved from the network. Thirdly, based on these two studies and considering the complexity of developing, testing, and debugging this kind of complex system, a model for a simulation framework of the real-time databases management on WSN that uses a distributed approach and its implementation are proposed. This will help to explore various solutions of real-time database techniques on WSNs before deployment for economizing money and time. Moreover, one may improve the proposed model by adding the simulation of protocols or place part of this simulator on another available simulator. For validating the model, a case study considering real-time constraints as well as energy constraints is discussed. Fourth, a new architecture that combines statistical modeling techniques with the distributed approach and a query processing algorithm to optimize the real-time user query processing are proposed. This combination allows performing a query processing algorithm based on admission control that uses the error tolerance and the probabilistic confidence interval as admission parameters. The experiments based on real world data sets as well as synthetic data sets demonstrate that the proposed solution optimizes the real-time query processing to save more energy while meeting low latency.Fundação para a Ciência e Tecnologi

    Collaborative telemedicine for interactive multiuser segmentation of volumetric medical images

    Get PDF
    Telemedicine has evolved rapidly in recent years to enable unprecedented access to digital medical data, such as with networked image distribution/sharing and online (distant) collaborative diagnosis, largely due to the advances in telecommunication and multimedia technologies. However, interactive collaboration systems which control editing of an object among multiple users are often limited to a simple "locking” mechanism based on a conventional client/server architecture, where only one user edits the object which is located in a specific server, while all other users become viewers. Such systems fail to provide the needs of a modern day telemedicine applications that demand simultaneous editing of the medical data distributed in diverse local sites. In this study, we introduce a novel system for telemedicine applications, with its application to an interactive segmentation of volumetric medical images. We innovate by proposing a collaborative mechanism with a scalable data sharing architecture which makes users interactively edit on a single shared image scattered in local sites, thus enabling collaborative editing for, e.g., collaborative diagnosis, teaching, and training. We demonstrate our collaborative telemedicine mechanism with a prototype image editing system developed and evaluated with a user case study. Our result suggests that the ability for collaborative editing in a telemedicine context can be of great benefit and hold promising potential for further researc

    Practical database replication

    Get PDF
    Tese de doutoramento em InformáticaSoftware-based replication is a cost-effective approach for fault-tolerance when combined with commodity hardware. In particular, shared-nothing database clusters built upon commodity machines and synchronized through eager software-based replication protocols have been driven by the distributed systems community in the last decade. The efforts on eager database replication, however, stem from the late 1970s with initial proposals designed by the database community. From that time, we have the distributed locking and atomic commitment protocols. Briefly speaking, before updating a data item, all copies are locked through a distributed lock, and upon commit, an atomic commitment protocol is responsible for guaranteeing that the transaction’s changes are written to a non-volatile storage at all replicas before committing it. Both these processes contributed to a poor performance. The distributed systems community improved these processes by reducing the number of interactions among replicas through the use of group communication and by relaxing the durability requirements imposed by the atomic commitment protocol. The approach requires at most two interactions among replicas and disseminates updates without necessarily applying them before committing a transaction. This relies on a high number of machines to reduce the likelihood of failures and ensure data resilience. Clearly, the availability of commodity machines and their increasing processing power makes this feasible. Proving the feasibility of this approach requires us to build several prototypes and evaluate them with different workloads and scenarios. Although simulation environments are a good starting point, mainly those that allow us to combine real (e.g., replication protocols, group communication) and simulated-code (e.g., database, network), full-fledged implementations should be developed and tested. Unfortunately, database vendors usually do not provide native support for the development of third-party replication protocols, thus forcing protocol developers to either change the database engines, when the source code is available, or construct in the middleware server wrappers that intercept client requests otherwise. The former solution is hard to maintain as new database releases are constantly being produced, whereas the latter represents a strenuous development effort as it requires us to rebuild several database features at the middleware. Unfortunately, the group-based replication protocols, optimistic or conservative, that had been proposed so far have drawbacks that present a major hurdle to their practicability. The optimistic protocols make it difficult to commit transactions in the presence of hot-spots, whereas the conservative protocols have a poor performance due to concurrency issues. In this thesis, we propose using a generic architecture and programming interface, titled GAPI, to facilitate the development of different replication strategies. The idea consists of providing key extensions to multiple DBMSs (Database Management Systems), thus enabling a replication strategy to be developed once and tested on several databases that have such extensions, i.e., those that are replication-friendly. To tackle the aforementioned problems in groupbased replication protocols, we propose using a novel protocol, titled AKARA. AKARA guarantees fairness, and thus all transactions have a chance to commit, and ensures great performance while exploiting parallelism as provided by local database engines. Finally, we outline a simple but comprehensive set of components to build group-based replication protocols and discuss key points in its design and implementation.A replicação baseada em software é uma abordagem que fornece um bom custo benefício para tolerância a falhas quando combinada com hardware commodity. Em particular, os clusters de base de dados “shared-nothing” construídos com hardware commodity e sincronizados através de protocolos “eager” têm sido impulsionados pela comunidade de sistemas distribuídos na última década. Os primeiros esforços na utilização dos protocolos “eager”, decorrem da década de 70 do século XX com as propostas da comunidade de base de dados. Dessa época, temos os protocolos de bloqueio distribuído e de terminação atómica (i.e. “two-phase commit”). De forma sucinta, antes de actualizar um item de dados, todas as cópias são bloqueadas através de um protocolo de bloqueio distribuído e, no momento de efetivar uma transacção, um protocolo de terminação atómica é responsável por garantir que as alterações da transacção são gravadas em todas as réplicas num sistema de armazenamento não-volátil. No entanto, ambos os processos contribuem para um mau desempenho do sistema. A comunidade de sistemas distribuídos melhorou esses processos, reduzindo o número de interacções entre réplicas, através do uso da comunicação em grupo e minimizando a rigidez os requisitos de durabilidade impostos pelo protocolo de terminação atómica. Essa abordagem requer no máximo duas interacções entre as réplicas e dissemina actualizações sem necessariamente aplicá-las antes de efectivar uma transacção. Para funcionar, a solução depende de um elevado número de máquinas para reduzirem a probabilidade de falhas e garantir a resiliência de dados. Claramente, a disponibilidade de hardware commodity e o seu poder de processamento crescente tornam essa abordagem possível. Comprovar a viabilidade desta abordagem obriga-nos a construir vários protótipos e a avaliálos com diferentes cargas de trabalho e cenários. Embora os ambientes de simulação sejam um bom ponto de partida, principalmente aqueles que nos permitem combinar o código real (por exemplo, protocolos de replicação, a comunicação em grupo) e o simulado (por exemplo, base de dados, rede), implementações reais devem ser desenvolvidas e testadas. Infelizmente, os fornecedores de base de dados, geralmente, não possuem suporte nativo para o desenvolvimento de protocolos de replicação de terceiros, forçando os desenvolvedores de protocolo a mudar o motor de base de dados, quando o código fonte está disponível, ou a construir no middleware abordagens que interceptam as solicitações do cliente. A primeira solução é difícil de manter já que novas “releases” das bases de dados estão constantemente a serem produzidas, enquanto a segunda representa um desenvolvimento árduo, pois obriga-nos a reconstruir vários recursos de uma base de dados no middleware. Infelizmente, os protocolos de replicação baseados em comunicação em grupo, optimistas ou conservadores, que foram propostos até agora apresentam inconvenientes que são um grande obstáculo à sua utilização. Com os protocolos optimistas é difícil efectivar transacções na presença de “hot-spots”, enquanto que os protocolos conservadores têm um fraco desempenho devido a problemas de concorrência. Nesta tese, propomos utilizar uma arquitetura genérica e uma interface de programação, intitulada GAPI, para facilitar o desenvolvimento de diferentes estratégias de replicação. A ideia consiste em fornecer extensões chaves para múltiplos SGBDs (Database Management Systems), permitindo assim que uma estratégia de replicação possa ser desenvolvida uma única vez e testada em várias bases de dados que possuam tais extensões, ou seja, aquelas que são “replicationfriendly”. Para resolver os problemas acima referidos nos protocolos de replicação baseados em comunicação em grupo, propomos utilizar um novo protocolo, intitulado AKARA. AKARA garante a equidade, portanto, todas as operações têm uma oportunidade de serem efectivadas, e garante um excelente desempenho ao tirar partido do paralelismo fornecido pelos motores de base de dados. Finalmente, propomos um conjunto simples, mas abrangente de componentes para construir protocolos de replicação baseados em comunicação em grupo e discutimos pontoschave na sua concepção e implementação

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    From cluster databases to cloud storage: Providing transactional support on the cloud

    Get PDF
    Durant les últimes tres dècades, les limitacions tecnològiques (com per exemple la capacitat dels dispositius d'emmagatzematge o l'ample de banda de les xarxes de comunicació) i les creixents demandes dels usuaris (estructures d'informació, volums de dades) han conduït l'evolució de les bases de dades distribuïdes. Des dels primers repositoris de dades per arxius plans que es van desenvolupar en la dècada dels vuitanta, s'han produït importants avenços en els algoritmes de control de concurrència, protocols de replicació i en la gestió de transaccions. No obstant això, els reptes moderns d'emmagatzematge de dades que plantegen el Big Data i el cloud computing—orientats a millorar la limitacions pel que fa a escalabilitat i elasticitat de les bases de dades estàtiques—estan empenyent als professionals a relaxar algunes propietats importants dels sistemes transaccionals clàssics, cosa que exclou a diverses aplicacions les quals no poden encaixar en aquesta estratègia degut a la seva alta dependència transaccional. El propòsit d'aquesta tesi és abordar dos reptes importants encara latents en el camp de les bases de dades distribuïdes: (1) les limitacions pel que fa a escalabilitat dels sistemes transaccionals i (2) el suport transaccional en repositoris d'emmagatzematge en el núvol. Analitzar les tècniques tradicionals de control de concurrència i de replicació, utilitzades per les bases de dades clàssiques per suportar transaccions, és fonamental per identificar les raons que fan que aquests sistemes degradin el seu rendiment quan el nombre de nodes i / o quantitat de dades creix. A més, aquest anàlisi està orientat a justificar el disseny dels repositoris en el núvol que deliberadament han deixat de banda el suport transaccional. Efectivament, apropar el paradigma de l'emmagatzematge en el núvol a les aplicacions que tenen una forta dependència en les transaccions és fonamental per a la seva adaptació als requeriments actuals pel que fa a volums de dades i models de negoci. Aquesta tesi comença amb la proposta d'un simulador de protocols per a bases de dades distribuïdes estàtiques, el qual serveix com a base per a la revisió i comparativa de rendiment dels protocols de control de concurrència i les tècniques de replicació existents. Pel que fa a la escalabilitat de les bases de dades i les transaccions, s'estudien els efectes que té executar diferents perfils de transacció sota diferents condicions. Aquesta anàlisi contínua amb una revisió dels repositoris d'emmagatzematge de dades en el núvol existents—que prometen encaixar en entorns dinàmics que requereixen alta escalabilitat i disponibilitat—, el qual permet avaluar els paràmetres i característiques que aquests sistemes han sacrificat per tal de complir les necessitats actuals pel que fa a emmagatzematge de dades a gran escala. Per explorar les possibilitats que ofereix el paradigma del cloud computing en un escenari real, es presenta el desenvolupament d'una arquitectura d'emmagatzematge de dades inspirada en el cloud computing la qual s’utilitza per emmagatzemar la informació generada en les Smart Grids. Concretament, es combinen les tècniques de replicació en bases de dades transaccionals i la propagació epidèmica amb els principis de disseny usats per construir els repositoris de dades en el núvol. Les lliçons recollides en l'estudi dels protocols de replicació i control de concurrència en el simulador de base de dades, juntament amb les experiències derivades del desenvolupament del repositori de dades per a les Smart Grids, desemboquen en el que hem batejat com Epidemia: una infraestructura d'emmagatzematge per Big Data concebuda per proporcionar suport transaccional en el núvol. A més d'heretar els beneficis dels repositoris en el núvol en quant a escalabilitat, Epidemia inclou una capa de gestió de transaccions que reenvia les transaccions dels clients a un conjunt jeràrquic de particions de dades, cosa que permet al sistema oferir diferents nivells de consistència i adaptar elàsticament la seva configuració a noves demandes de càrrega de treball. Finalment, els resultats experimentals posen de manifest la viabilitat de la nostra contribució i encoratgen als professionals a continuar treballant en aquesta àrea.Durante las últimas tres décadas, las limitaciones tecnológicas (por ejemplo la capacidad de los dispositivos de almacenamiento o el ancho de banda de las redes de comunicación) y las crecientes demandas de los usuarios (estructuras de información, volúmenes de datos) han conducido la evolución de las bases de datos distribuidas. Desde los primeros repositorios de datos para archivos planos que se desarrollaron en la década de los ochenta, se han producido importantes avances en los algoritmos de control de concurrencia, protocolos de replicación y en la gestión de transacciones. Sin embargo, los retos modernos de almacenamiento de datos que plantean el Big Data y el cloud computing—orientados a mejorar la limitaciones en cuanto a escalabilidad y elasticidad de las bases de datos estáticas—están empujando a los profesionales a relajar algunas propiedades importantes de los sistemas transaccionales clásicos, lo que excluye a varias aplicaciones las cuales no pueden encajar en esta estrategia debido a su alta dependencia transaccional. El propósito de esta tesis es abordar dos retos importantes todavía latentes en el campo de las bases de datos distribuidas: (1) las limitaciones en cuanto a escalabilidad de los sistemas transaccionales y (2) el soporte transaccional en repositorios de almacenamiento en la nube. Analizar las técnicas tradicionales de control de concurrencia y de replicación, utilizadas por las bases de datos clásicas para soportar transacciones, es fundamental para identificar las razones que hacen que estos sistemas degraden su rendimiento cuando el número de nodos y/o cantidad de datos crece. Además, este análisis está orientado a justificar el diseño de los repositorios en la nube que deliberadamente han dejado de lado el soporte transaccional. Efectivamente, acercar el paradigma del almacenamiento en la nube a las aplicaciones que tienen una fuerte dependencia en las transacciones es crucial para su adaptación a los requerimientos actuales en cuanto a volúmenes de datos y modelos de negocio. Esta tesis empieza con la propuesta de un simulador de protocolos para bases de datos distribuidas estáticas, el cual sirve como base para la revisión y comparativa de rendimiento de los protocolos de control de concurrencia y las técnicas de replicación existentes. En cuanto a la escalabilidad de las bases de datos y las transacciones, se estudian los efectos que tiene ejecutar distintos perfiles de transacción bajo diferentes condiciones. Este análisis continua con una revisión de los repositorios de almacenamiento en la nube existentes—que prometen encajar en entornos dinámicos que requieren alta escalabilidad y disponibilidad—, el cual permite evaluar los parámetros y características que estos sistemas han sacrificado con el fin de cumplir las necesidades actuales en cuanto a almacenamiento de datos a gran escala. Para explorar las posibilidades que ofrece el paradigma del cloud computing en un escenario real, se presenta el desarrollo de una arquitectura de almacenamiento de datos inspirada en el cloud computing para almacenar la información generada en las Smart Grids. Concretamente, se combinan las técnicas de replicación en bases de datos transaccionales y la propagación epidémica con los principios de diseño usados para construir los repositorios de datos en la nube. Las lecciones recogidas en el estudio de los protocolos de replicación y control de concurrencia en el simulador de base de datos, junto con las experiencias derivadas del desarrollo del repositorio de datos para las Smart Grids, desembocan en lo que hemos acuñado como Epidemia: una infraestructura de almacenamiento para Big Data concebida para proporcionar soporte transaccional en la nube. Además de heredar los beneficios de los repositorios en la nube altamente en cuanto a escalabilidad, Epidemia incluye una capa de gestión de transacciones que reenvía las transacciones de los clientes a un conjunto jerárquico de particiones de datos, lo que permite al sistema ofrecer distintos niveles de consistencia y adaptar elásticamente su configuración a nuevas demandas cargas de trabajo. Por último, los resultados experimentales ponen de manifiesto la viabilidad de nuestra contribución y alientan a los profesionales a continuar trabajando en esta área.Over the past three decades, technology constraints (e.g., capacity of storage devices, communication networks bandwidth) and an ever-increasing set of user demands (e.g., information structures, data volumes) have driven the evolution of distributed databases. Since flat-file data repositories developed in the early eighties, there have been important advances in concurrency control algorithms, replication protocols, and transactions management. However, modern concerns in data storage posed by Big Data and cloud computing—related to overcome the scalability and elasticity limitations of classic databases—are pushing practitioners to relax some important properties featured by transactions, which excludes several applications that are unable to fit in this strategy due to their intrinsic transactional nature. The purpose of this thesis is to address two important challenges still latent in distributed databases: (1) the scalability limitations of transactional databases and (2) providing transactional support on cloud-based storage repositories. Analyzing the traditional concurrency control and replication techniques, used by classic databases to support transactions, is critical to identify the reasons that make these systems degrade their throughput when the number of nodes and/or amount of data rockets. Besides, this analysis is devoted to justify the design rationale behind cloud repositories in which transactions have been generally neglected. Furthermore, enabling applications which are strongly dependent on transactions to take advantage of the cloud storage paradigm is crucial for their adaptation to current data demands and business models. This dissertation starts by proposing a custom protocol simulator for static distributed databases, which serves as a basis for revising and comparing the performance of existing concurrency control protocols and replication techniques. As this thesis is especially concerned with transactions, the effects on the database scalability of different transaction profiles under different conditions are studied. This analysis is followed by a review of existing cloud storage repositories—that claim to be highly dynamic, scalable, and available—, which leads to an evaluation of the parameters and features that these systems have sacrificed in order to meet current large-scale data storage demands. To further explore the possibilities of the cloud computing paradigm in a real-world scenario, a cloud-inspired approach to store data from Smart Grids is presented. More specifically, the proposed architecture combines classic database replication techniques and epidemic updates propagation with the design principles of cloud-based storage. The key insights collected when prototyping the replication and concurrency control protocols at the database simulator, together with the experiences derived from building a large-scale storage repository for Smart Grids, are wrapped up into what we have coined as Epidemia: a storage infrastructure conceived to provide transactional support on the cloud. In addition to inheriting the benefits of highly-scalable cloud repositories, Epidemia includes a transaction management layer that forwards client transactions to a hierarchical set of data partitions, which allows the system to offer different consistency levels and elastically adapt its configuration to incoming workloads. Finally, experimental results highlight the feasibility of our contribution and encourage practitioners to further research in this area
    corecore