685 research outputs found

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively

    Terahertz for subsurface imaging and metrology applications

    Get PDF
    In the area of metrology and non-destructive testing, Terahertz wavelengths have been widely researched and used. However, the lack of 2D detectors working at room temperature and high power sources prevent the widespread application of Terahertz in industry. In that context, research on the development of new Terahertz equipment is moving at a fast pace. Within the scope of this thesis, applications of newly developed Terahertz technologies were explored using the scanning of single point detectors with the objective to establish the feasibility for their full-field applications in readiness for future 2D detectors. For the first time, a frequency tuneable, all-optical Terahertz source was implemented in multi-wavelength interferometry to overcome one wavelength ambiguity in precise thickness/distance measurements with sub-millimetre resolution. Phase-shifting digital holography is another interferometry technique which allows us to reconstruct not only the amplitude of one object, but also the phase and the depth of it, using existing mathematical algorithms. Digital holography was performed successfully at Terahertz wavelengths using a multiplier/mixer Terahertz source coupled with a single point pyroelectric detector for the applications of non-destructive testing and depth measurements. The novelty is that the phase-stepping technique for digital holography was implemented in THz frequencies for the first time to remove unwanted terms in the reconstructed image in order to improve image quality compare to conventional holography. In the current experiments, recording time for one set of phase-shifting holograms (4 holograms for 4 phase-steps algorithm) was 6 hours. When the technology is ready for 2D detectors, recording time of holograms could be reduced considerably, and the technique will play an important role in full-field applications in industry metrology and/or non-destructive testing and evaluation.EPSR

    OCM 2023 - Optical Characterization of Materials : Conference Proceedings

    Get PDF
    The state of the art in the optical characterization of materials is advancing rapidly. New insights have been gained into the theoretical foundations of this research and exciting developments have been made in practice, driven by new applications and innovative sensor technologies that are constantly evolving. The great success of past conferences proves the necessity of a platform for presentation, discussion and evaluation of the latest research results in this interdisciplinary field

    Novel Materials and Devices for Terahertz Detection and Emission for Sensing, Imaging and Communication

    Get PDF
    Technical advancement is required to attain a high data transmission rate, which entails expanding beyond the currently available bandwidth and establishing a new standard for the highest data rates, which mandates a higher frequency range and larger bandwidth. The THz spectrum (0.1-10 THz) has been considered as an emerging next frontier for the future 5G and beyond technology. THz frequencies also offer unique characteristics, such as penetrating most dielectric materials like fabric, plastic, and leather, making them appealing for imaging and sensing applications. Therefore, employing a high-power room temperature, tunable THz emitters, and a high responsivity THz detector is essential. Dyakonov-theory Shur\u27s was applied in this dissertation to achieve tunable THz detection and emission by plasma waves in high carrier density channels of field-effect devices. The first major contribution of this dissertation is developing graphene-based THz plasmonics detector with high responsivity. An upside-down free-standing graphene in a field effect transistor based resonant room temperature THz detector device with significantly improved mobility and gate control has been presented. The highest achieved responsivity is ~3.1kV/W, which is more than 10 times higher than any THz detector reported till now. The active region is predominantly single-layer graphene with multi-grains, even though the fabricated graphene THz detector has the highest responsivity. The challenges encountered during the fabrication and measurement of the graphene-based detector have been described, along with a strategy to overcome them while preserving high graphene mobility. In our new design, a monolayer of hBN underneath the graphene layer has been deposited to increase the mobility and electron concentration rate further. We also investigated the diamond-based FETs for their potential characteristics as a THz emitters and detectors. Diamond\u27s wide bandgap, high breakdown field, and high thermal conductivity attributes make it a potential semiconductor material for high voltage, high power, and high-temperature operation. Diamond is a good choice for THz and sub-THz applications because of its high optical phonon scattering and high momentum relaxation time. Numerical and analytical studies of diamond materials, including p-diamond and n-diamond materials, are presented, indicating their effectiveness as a prospective contender for high temperature and high power-based terahertz applications These detectors are expected to be a strong competitor for future THz on-chip applications due to their high sensitivity, low noise, tunability, compact size, mobility, faster response time, room temperature operation, and lower cost. Furthermore, when plasma wave instabilities are induced with the proper biasing, the same devices can be employed as THz emitters, which are expected to have a higher emission power. Another key contribution is developing a method for detecting counterfeit, damaged, forged, or defective ICs has been devised utilizing a new non-destructive and unobtrusive terahertz testing approach to address the crucial point of hardware cybersecurity and system reliability. The response of MMICs, VLSI, and ULSIC to incident terahertz and sub-terahertz radiation at the circuit pins are measured and analyzed using deep learning. More sophisticated terahertz response profiles and signatures of specific ICs can be created by measuring a more significant number of pins under different frequencies, polarizations, and depth of focus. The proposed method has no effect on ICs operation and could provide precise ICs signatures. The classification process between the secure and unsecure ICs images has been explained using data augmentation and transfer learning-based convolution neural network with ~98% accuracy. A planar nanomatryoshka type core-shell resonator with hybrid toroidal moments is shown both experimentally and analytically, allowing unique characteristics to be explored. This resonator may be utilized for accurate sensing, immunobiosensing, quick switching, narrow-band filters, and other applications

    Mid infrared digital holography and terahertz imaging

    Get PDF
    Mid IR and Far IR (THz) regions have been attracting a continuously growing interest, especially for imaging applications. Mid IR imaging systems are widespread in the military, security and medical fields and are, consequently, in continuous development. Even greater expectation is placed on THz imaging techniques, because of the well-known capacity of THz radiation to penetrate many common materials and to provide important spectroscopic information about various strategic stuffs. In this scenario Digital Holography, a quite recent interferometric imaging technique, is proving to be mature enough to play a key role among the other imaging techniques, both in the Mid IR and in the Far IR

    Learning Diffractive Optical Communication Around Arbitrary Opaque Occlusions

    Full text link
    Free-space optical systems are emerging for high data rate communication and transfer of information in indoor and outdoor settings. However, free-space optical communication becomes challenging when an occlusion blocks the light path. Here, we demonstrate, for the first time, a direct communication scheme, passing optical information around a fully opaque, arbitrarily shaped obstacle that partially or entirely occludes the transmitter's field-of-view. In this scheme, an electronic neural network encoder and a diffractive optical network decoder are jointly trained using deep learning to transfer the optical information or message of interest around the opaque occlusion of an arbitrary shape. The diffractive decoder comprises successive spatially-engineered passive surfaces that process optical information through light-matter interactions. Following its training, the encoder-decoder pair can communicate any arbitrary optical information around opaque occlusions, where information decoding occurs at the speed of light propagation. For occlusions that change their size and/or shape as a function of time, the encoder neural network can be retrained to successfully communicate with the existing diffractive decoder, without changing the physical layer(s) already deployed. We also validate this framework experimentally in the terahertz spectrum using a 3D-printed diffractive decoder to communicate around a fully opaque occlusion. Scalable for operation in any wavelength regime, this scheme could be particularly useful in emerging high data-rate free-space communication systems.Comment: 23 Pages, 9 Figure

    Propagation of terahertz radiation in non-homogeneous materials and structures

    Get PDF
    The work undertaken is concerned with looking at how terahertz frequency radiation (here defined as 300 GHz -10 THz) propagates through media which have a random structure ("non-homogeneous materials"). Materials of this type are important in a wide range of applications, but are of particular interest in security and surveillance. Propagation of terahertz radiation through non-homogeneous materials is not well understood: both interference and scattering effects become important in this spectral range, where the wavelength and size and separation of the scattering centres are often commensurable. A simple model, which uses the phase change of a wave to describe its transmission through media having relatively small changes in refractive index is developed and compared with both exact theories and experimentally obtained measurements. Overall, a satisfactory agreement between the experimental data for transmission through arrays of cylinders, textiles and powders is seen. It is well known that pulses of terahertz radiation from optoelectronic sources have a complex shape. Post detection signal processing routines can be used to clean up the experimentally determined signals. The development of such algorithms is described, before they are applied to experimental results to determine: the minimum size of gaps between slabs to mimic voids in media; and the response of various compounds to a sharply terminated input pulse. The investigation of scattering from random structures requires the construction of a spectrometer having the capability to measure THz pulses scattered at different angles. Such a system ideally requires fibre-fed detection schemes to be used. The construction of a scattering spectrometer is described and its performance outlined. Pulses of terahertz which have been scattered by a sample of interest can be reconstructed, using methods from conventional tomography, to produce images of the phantom under test. Such measurements are outlined here. To our knowledge, this is the first time that tomography has been undertaken using a fixed sample and rotating detector arrangement
    • …
    corecore