55 research outputs found

    Biologically motivated keypoint detection for RGB-D data

    Get PDF
    With the emerging interest in active vision, computer vision researchers have been increasingly concerned with the mechanisms of attention. Therefore, several visual attention computational models inspired by the human visual system, have been developed, aiming at the detection of regions of interest in images. This thesis is focused on selective visual attention, which provides a mechanism for the brain to focus computational resources on an object at a time, guided by low-level image properties (Bottom-Up attention). The task of recognizing objects in different locations is achieved by focusing on different locations, one at a time. Given the computational requirements of the models proposed, the research in this area has been mainly of theoretical interest. More recently, psychologists, neurobiologists and engineers have developed cooperation's and this has resulted in considerable benefits. The first objective of this doctoral work is to bring together concepts and ideas from these different research areas, providing a study of the biological research on human visual system and a discussion of the interdisciplinary knowledge in this area, as well as the state-of-art on computational models of visual attention (bottom-up). Normally, the visual attention is referred by engineers as saliency: when people fix their look in a particular region of the image, that's because that region is salient. In this research work, saliency methods are presented based on their classification (biological plausible, computational or hybrid) and in a chronological order. A few salient structures can be used for applications like object registration, retrieval or data simplification, being possible to consider these few salient structures as keypoints when aiming at performing object recognition. Generally, object recognition algorithms use a large number of descriptors extracted in a dense set of points, which comes along with very high computational cost, preventing real-time processing. To avoid the problem of the computational complexity required, the features have to be extracted from a small set of points, usually called keypoints. The use of keypoint-based detectors allows the reduction of the processing time and the redundancy in the data. Local descriptors extracted from images have been extensively reported in the computer vision literature. Since there is a large set of keypoint detectors, this suggests the need of a comparative evaluation between them. In this way, we propose to do a description of 2D and 3D keypoint detectors, 3D descriptors and an evaluation of existing 3D keypoint detectors in a public available point cloud library with 3D real objects. The invariance of the 3D keypoint detectors was evaluated according to rotations, scale changes and translations. This evaluation reports the robustness of a particular detector for changes of point-of-view and the criteria used are the absolute and the relative repeatability rate. In our experiments, the method that achieved better repeatability rate was the ISS3D method. The analysis of the human visual system and saliency maps detectors with biological inspiration led to the idea of making an extension for a keypoint detector based on the color information in the retina. Such proposal produced a 2D keypoint detector inspired by the behavior of the early visual system. Our method is a color extension of the BIMP keypoint detector, where we include both color and intensity channels of an image: color information is included in a biological plausible way and multi-scale image features are combined into a single keypoints map. This detector is compared against state-of-art detectors and found particularly well-suited for tasks such as category and object recognition. The recognition process is performed by comparing the extracted 3D descriptors in the locations indicated by the keypoints after mapping the 2D keypoints locations to the 3D space. The evaluation allowed us to obtain the best pair keypoint detector/descriptor on a RGB-D object dataset. Using our keypoint detector and the SHOTCOLOR descriptor a good category recognition rate and object recognition rate were obtained, and it is with the PFHRGB descriptor that we obtain the best results. A 3D recognition system involves the choice of keypoint detector and descriptor. A new method for the detection of 3D keypoints on point clouds is presented and a benchmarking is performed between each pair of 3D keypoint detector and 3D descriptor to evaluate their performance on object and category recognition. These evaluations are done in a public database of real 3D objects. Our keypoint detector is inspired by the behavior and neural architecture of the primate visual system: the 3D keypoints are extracted based on a bottom-up 3D saliency map, which is a map that encodes the saliency of objects in the visual environment. The saliency map is determined by computing conspicuity maps (a combination across different modalities) of the orientation, intensity and color information, in a bottom-up and in a purely stimulusdriven manner. These three conspicuity maps are fused into a 3D saliency map and, finally, the focus of attention (or "keypoint location") is sequentially directed to the most salient points in this map. Inhibiting this location automatically allows the system to attend to the next most salient location. The main conclusions are: with a similar average number of keypoints, our 3D keypoint detector outperforms the other eight 3D keypoint detectors evaluated by achiving the best result in 32 of the evaluated metrics in the category and object recognition experiments, when the second best detector only obtained the best result in 8 of these metrics. The unique drawback is the computational time, since BIK-BUS is slower than the other detectors. Given that differences are big in terms of recognition performance, size and time requirements, the selection of the keypoint detector and descriptor has to be matched to the desired task and we give some directions to facilitate this choice. After proposing the 3D keypoint detector, the research focused on a robust detection and tracking method for 3D objects by using keypoint information in a particle filter. This method consists of three distinct steps: Segmentation, Tracking Initialization and Tracking. The segmentation is made to remove all the background information, reducing the number of points for further processing. In the initialization, we use a keypoint detector with biological inspiration. The information of the object that we want to follow is given by the extracted keypoints. The particle filter does the tracking of the keypoints, so with that we can predict where the keypoints will be in the next frame. In a recognition system, one of the problems is the computational cost of keypoint detectors with this we intend to solve this problem. The experiments with PFBIKTracking method are done indoors in an office/home environment, where personal robots are expected to operate. The Tracking Error evaluates the stability of the general tracking method. We also quantitatively evaluate this method using a "Tracking Error". Our evaluation is done by the computation of the keypoint and particle centroid. Comparing our system that the tracking method which exists in the Point Cloud Library, we archive better results, with a much smaller number of points and computational time. Our method is faster and more robust to occlusion when compared to the OpenniTracker.Com o interesse emergente na visão ativa, os investigadores de visão computacional têm estado cada vez mais preocupados com os mecanismos de atenção. Por isso, uma série de modelos computacionais de atenção visual, inspirado no sistema visual humano, têm sido desenvolvidos. Esses modelos têm como objetivo detetar regiões de interesse nas imagens. Esta tese está focada na atenção visual seletiva, que fornece um mecanismo para que o cérebro concentre os recursos computacionais num objeto de cada vez, guiado pelas propriedades de baixo nível da imagem (atenção Bottom-Up). A tarefa de reconhecimento de objetos em diferentes locais é conseguida através da concentração em diferentes locais, um de cada vez. Dados os requisitos computacionais dos modelos propostos, a investigação nesta área tem sido principalmente de interesse teórico. Mais recentemente, psicólogos, neurobiólogos e engenheiros desenvolveram cooperações e isso resultou em benefícios consideráveis. No início deste trabalho, o objetivo é reunir os conceitos e ideias a partir dessas diferentes áreas de investigação. Desta forma, é fornecido o estudo sobre a investigação da biologia do sistema visual humano e uma discussão sobre o conhecimento interdisciplinar da matéria, bem como um estado de arte dos modelos computacionais de atenção visual (bottom-up). Normalmente, a atenção visual é denominada pelos engenheiros como saliência, se as pessoas fixam o olhar numa determinada região da imagem é porque esta região é saliente. Neste trabalho de investigação, os métodos saliência são apresentados em função da sua classificação (biologicamente plausível, computacional ou híbrido) e numa ordem cronológica. Algumas estruturas salientes podem ser usadas, em vez do objeto todo, em aplicações tais como registo de objetos, recuperação ou simplificação de dados. É possível considerar estas poucas estruturas salientes como pontos-chave, com o objetivo de executar o reconhecimento de objetos. De um modo geral, os algoritmos de reconhecimento de objetos utilizam um grande número de descritores extraídos num denso conjunto de pontos. Com isso, estes têm um custo computacional muito elevado, impedindo que o processamento seja realizado em tempo real. A fim de evitar o problema da complexidade computacional requerido, as características devem ser extraídas a partir de um pequeno conjunto de pontos, geralmente chamados pontoschave. O uso de detetores de pontos-chave permite a redução do tempo de processamento e a quantidade de redundância dos dados. Os descritores locais extraídos a partir das imagens têm sido amplamente reportados na literatura de visão por computador. Uma vez que existe um grande conjunto de detetores de pontos-chave, sugere a necessidade de uma avaliação comparativa entre eles. Desta forma, propomos a fazer uma descrição dos detetores de pontos-chave 2D e 3D, dos descritores 3D e uma avaliação dos detetores de pontos-chave 3D existentes numa biblioteca de pública disponível e com objetos 3D reais. A invariância dos detetores de pontoschave 3D foi avaliada de acordo com variações nas rotações, mudanças de escala e translações. Essa avaliação retrata a robustez de um determinado detetor no que diz respeito às mudanças de ponto-de-vista e os critérios utilizados são as taxas de repetibilidade absoluta e relativa. Nas experiências realizadas, o método que apresentou melhor taxa de repetibilidade foi o método ISS3D. Com a análise do sistema visual humano e dos detetores de mapas de saliência com inspiração biológica, surgiu a ideia de se fazer uma extensão para um detetor de ponto-chave com base na informação de cor na retina. A proposta produziu um detetor de ponto-chave 2D inspirado pelo comportamento do sistema visual. O nosso método é uma extensão com base na cor do detetor de ponto-chave BIMP, onde se incluem os canais de cor e de intensidade de uma imagem. A informação de cor é incluída de forma biológica plausível e as características multi-escala da imagem são combinadas num único mapas de pontos-chave. Este detetor é comparado com os detetores de estado-da-arte e é particularmente adequado para tarefas como o reconhecimento de categorias e de objetos. O processo de reconhecimento é realizado comparando os descritores 3D extraídos nos locais indicados pelos pontos-chave. Para isso, as localizações do pontos-chave 2D têm de ser convertido para o espaço 3D. Isto foi possível porque o conjunto de dados usado contém a localização de cada ponto de no espaço 2D e 3D. A avaliação permitiu-nos obter o melhor par detetor de ponto-chave/descritor num RGB-D object dataset. Usando o nosso detetor de ponto-chave e o descritor SHOTCOLOR, obtemos uma noa taxa de reconhecimento de categorias e para o reconhecimento de objetos é com o descritor PFHRGB que obtemos os melhores resultados. Um sistema de reconhecimento 3D envolve a escolha de detetor de ponto-chave e descritor, por isso é apresentado um novo método para a deteção de pontos-chave em nuvens de pontos 3D e uma análise comparativa é realizada entre cada par de detetor de ponto-chave 3D e descritor 3D para avaliar o desempenho no reconhecimento de categorias e de objetos. Estas avaliações são feitas numa base de dados pública de objetos 3D reais. O nosso detetor de ponto-chave é inspirado no comportamento e na arquitetura neural do sistema visual dos primatas. Os pontos-chave 3D são extraídas com base num mapa de saliências 3D bottom-up, ou seja, um mapa que codifica a saliência dos objetos no ambiente visual. O mapa de saliência é determinada pelo cálculo dos mapas de conspicuidade (uma combinação entre diferentes modalidades) da orientação, intensidade e informações de cor de forma bottom-up e puramente orientada para o estímulo. Estes três mapas de conspicuidade são fundidos num mapa de saliência 3D e, finalmente, o foco de atenção (ou "localização do ponto-chave") está sequencialmente direcionado para os pontos mais salientes deste mapa. Inibir este local permite que o sistema automaticamente orientado para próximo local mais saliente. As principais conclusões são: com um número médio similar de pontos-chave, o nosso detetor de ponto-chave 3D supera os outros oito detetores de pontos-chave 3D avaliados, obtendo o melhor resultado em 32 das métricas avaliadas nas experiências do reconhecimento das categorias e dos objetos, quando o segundo melhor detetor obteve apenas o melhor resultado em 8 dessas métricas. A única desvantagem é o tempo computacional, uma vez que BIK-BUS é mais lento do que os outros detetores. Dado que existem grandes diferenças em termos de desempenho no reconhecimento, de tamanho e de tempo, a seleção do detetor de ponto-chave e descritor tem de ser interligada com a tarefa desejada e nós damos algumas orientações para facilitar esta escolha neste trabalho de investigação. Depois de propor um detetor de ponto-chave 3D, a investigação incidiu sobre um método robusto de deteção e tracking de objetos 3D usando as informações dos pontos-chave num filtro de partículas. Este método consiste em três etapas distintas: Segmentação, Inicialização do Tracking e Tracking. A segmentação é feita de modo a remover toda a informação de fundo, a fim de reduzir o número de pontos para processamento futuro. Na inicialização, usamos um detetor de ponto-chave com inspiração biológica. A informação do objeto que queremos seguir é dada pelos pontos-chave extraídos. O filtro de partículas faz o acompanhamento dos pontoschave, de modo a se poder prever onde os pontos-chave estarão no próximo frame. As experiências com método PFBIK-Tracking são feitas no interior, num ambiente de escritório/casa, onde se espera que robôs pessoais possam operar. Também avaliado quantitativamente este método utilizando um "Tracking Error". A avaliação passa pelo cálculo das centróides dos pontos-chave e das partículas. Comparando o nosso sistema com o método de tracking que existe na biblioteca usada no desenvolvimento, nós obtemos melhores resultados, com um número muito menor de pontos e custo computacional. O nosso método é mais rápido e mais robusto em termos de oclusão, quando comparado com o OpenniTracker

    Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods

    Get PDF
    Background\textbf{Background}: High-resolution 3D imaging of intact tissue facilitates cellular and subcellular analyses of complex structures within their native environment. However, difficulties associated with immunolabelling and imaging fluorescent proteins deep within whole organs have restricted their applications to thin sections or processed tissue preparations, precluding comprehensive and rapid 3D visualisation. Several tissue clearing methods have been established to circumvent issues associated with depth of imaging in opaque specimens. The application of these techniques to study the elaborate architecture of the mouse mammary gland has yet to be investigated. Methods\textbf{Methods}: Multiple tissue clearing methods were applied to intact virgin and lactating mammary glands, namely 3DISCO, SeeDB, CUBIC and PACT. Using confocal, twophoton and light sheet microscopy, their compatibility with wholemount immunofluorescent labelling and 3D imaging of mammary tissue was examined. In addition, their suitability for the analysis of mouse mammary tumours was also assessed. Results\textbf{Results}: Varying degrees of optical transparency, tissue preservation and fluorescent signal conservation were observed between the different clearing methods. SeeDB and CUBIC protocols were considered superior for volumetric fluorescence imaging and wholemount histochemical staining, respectively. Techniques were compatible with 3D imaging on a variety of platforms, enabling visualisation of mammary ductal and lobulo-alveolar structures at vastly improved depths in cleared tissue. Conclusions\textbf{Conclusions}: The utility of whole-organ tissue clearing protocols was assessed in the mouse mammary gland. Most methods utilised affordable and widely available reagents, and were compatible with standard confocal microscopy. These techniques enable high-resolution, 3D imaging and phenotyping of mammary cells and tumours in situ\textit{in situ}, and will significantly enhance our understanding of both normal and pathological mammary gland development.This work was supported by a grant from the Medical Research Council (MRC) program grant no. MR/J001023/1 (B.L-L. and C.J.W.). F.M.D. was funded by a National Health and Medical Research Council CJ Martin Biomedical Fellowship (GNT1071074). O.B.H. was funded by a Wellcome Trust PhD Studentship (105377/Z/14/Z). J.R.H was funded by an MRC research grant no. MR/K011014/1. F.C.L. was funded by Cancer Research UK and M.P. was funded by the MRC-LMB (MC_U105178788).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by BioMed Central

    Novel Motion Anchoring Strategies for Wavelet-based Highly Scalable Video Compression

    Full text link
    This thesis investigates new motion anchoring strategies that are targeted at wavelet-based highly scalable video compression (WSVC). We depart from two practices that are deeply ingrained in existing video compression systems. Instead of the commonly used block motion, which has poor scalability attributes, we employ piecewise-smooth motion together with a highly scalable motion boundary description. The combination of this more “physical” motion description together with motion discontinuity information allows us to change the conventional strategy of anchoring motion at target frames to anchoring motion at reference frames, which improves motion inference across time. In the proposed reference-based motion anchoring strategies, motion fields are mapped from reference to target frames, where they serve as prediction references; during this mapping process, disoccluded regions are readily discovered. Observing that motion discontinuities displace with foreground objects, we propose motion-discontinuity driven motion mapping operations that handle traditionally challenging regions around moving objects. The reference-based motion anchoring exposes an intricate connection between temporal frame interpolation (TFI) and video compression. When employed in a compression system, all anchoring strategies explored in this thesis perform TFI once all residual information is quantized to zero at a given temporal level. The interpolation performance is evaluated on both natural and synthetic sequences, where we show favourable comparisons with state-of-the-art TFI schemes. We explore three reference-based motion anchoring strategies. In the first one, the motion anchoring is “flipped” with respect to a hierarchical B-frame structure. We develop an analytical model to determine the weights of the different spatio-temporal subbands, and assess the suitability and benefits of this reference-based WSVC for (highly scalable) video compression. Reduced motion coding cost and improved frame prediction, especially around moving objects, result in improved rate-distortion performance compared to a target-based WSVC. As the thesis evolves, the motion anchoring is progressively simplified to one where all motion is anchored at one base frame; this central motion organization facilitates the incorporation of higher-order motion models, which improve the prediction performance in regions following motion with non-constant velocity

    Nutrition and the ageing brain: moving towards clinical applications

    Get PDF
    The global increases in life expectancy and population have resulted in a growing ageing population and with it a growing number of people living with age-related neurodegenerative conditions and dementia, shifting focus towards methods of prevention, with lifestyle approaches such as nutrition representing a promising avenue for further development. This overview summarises the main themes discussed during the 3 Symposium on "Nutrition for the Ageing Brain: Moving Towards Clinical Applications" held in Madrid in August 2018, enlarged with the current state of knowledge on how nutrition influences healthy ageing and gives recommendations regarding how the critical field of nutrition and neurodegeneration research should move forward into the future. Specific nutrients are discussed as well as the impact of multi-nutrient and whole diet approaches, showing particular promise to combatting the growing burden of age-related cognitive decline. The emergence of new avenues for exploring the role of diet in healthy ageing, such as the impact of the gut microbiome and development of new techniques (imaging measures of brain metabolism, metabolomics, biomarkers) are enabling researchers to approach finding answers to these questions. But the translation of these findings into clinical and public health contexts remains an obstacle due to significant shortcomings in nutrition research or pressure on the scientific community to communicate recommendations to the general public in a convincing and accessible way. Some promising programs exist but further investigation to improve our understanding of the mechanisms by which nutrition can improve brain health across the human lifespan is still required

    Intelligent Planning for Refractive Surgeries: A Modelling and Visualisation-based Approach

    Get PDF
    Laser refractive surgeries have been commonly used in ophthalmic operations. Considerable research has been carried out and encouraging progress made in recent years. It covers properties of the cornea and behaviour of tissue in different parts of the eye, topography and material expression of individual patient's eyes, prediction using finite element (FE) analysis to estimate the corneal shape change and the change in refractive power. Further effort is still required to advance the research to aid the decision making for laser refractive surgeries. This study comprehensively reviews the latest techniques of refractive surgery and research on computational analysis and modelling techniques and their applications, especially the current prediction and planning techniques for laser refractive surgeries. The aim of this study is to develop an intelligent assistant tool for the laser refractive surgeries with prediction and visualisation functions. For this aim, two objectives will be achieved: prediction with the clinical dataset and human vision simulation. Due to clinical statistics, the clinical dataset is often incomplete, imbalanced, and sparse. Three methods are proposed to predict surgery parameters and outcomes using the clinical dataset. A multiple imputation method, with multiple regression, is proposed for imputing the missing data. For the imbalance of data distribution in the clinical dataset, an over-sampling of the minority data method is proposed. The accuracy of predicted minority data is close to the accuracy of predicted majority data. Finally an ensemble learning method which is optimised by the genetic algorithm is proposed to improve the accuracy of the prediction results with a sparse dataset. According to the distribution of the sample in the clinical data, the percentage of unacceptable results is 23.02%. The methods in this study could provide an accuracy of 79.02% to find the possible unacceptable cases, that is, the method could reduce the percentage of unacceptable results from 23.02% to 4.82%. In human vision simulation, the study focuses on how the human vision simulation could be determined and obtained accurately within a required timeframe. The ray tracing technique can provide more precise results than the rasterisation technique, especially for the simulation of light reflection and refraction in the human eyeball. However, the thin lens assumption affects the accuracy of the pathological vision simulation with the ray tracing technique. An improved schematic human eye model is proposed to obtain a numerical model predicting the size of the defocus blur for the pathological vision, which wraps the shape of the ray intersection area. In order to generalise this model to other healthy and pathological vision, an intelligent blur range derivation method is proposed. On the other hand, ray tracing scene rendering requires repeated iterative computing which takes a significant amount of computation time. A GPU-based ray tracing computing method is proposed to accelerate and optimise the rendering of scenes. With this method, the scene rendering speed is about 75 times faster than using the CPU
    corecore