374 research outputs found

    Machine Learning in Adversarial Environments

    Full text link
    Machine Learning, especially Deep Neural Nets (DNNs), has achieved great success in a variety of applications. Unlike classical algorithms that could be formally analyzed, there is less understanding of neural network-based learning algorithms. This lack of understanding through either formal methods or empirical observations results in potential vulnerabilities that could be exploited by adversaries. This also hinders the deployment and adoption of learning methods in security-critical systems. Recent works have demonstrated that DNNs are vulnerable to carefully crafted adversarial perturbations. We refer to data instances with added adversarial perturbations as “adversarial examples”. Such adversarial examples can mislead DNNs to produce adversary-selected results. Furthermore, it can cause a DNN system to misbehavior in unexpected and potentially dangerous ways. In this context, in this thesis, we focus on studying the security problem of current DNNs from the viewpoints of both attack and defense. First, we explore the space of attacks against DNNs during the test time. We revisit the integrity of Lp regime and propose a new and rigorous threat model of adversarial examples. Based on this new threat model, we present the technique to generate adversarial examples in the digital space. Second, we study the physical consequence of adversarial examples in the 3D and physical spaces. We first study the vulnerabilities of various vision systems by simulating the photo0taken process by using the physical renderer. To further explore the physical consequence in the real world, we select the safety-critical application of autonomous driving as the target system and study the vulnerability of the LiDAR-perceptual module. These studies show the potentially severe consequences of adversarial examples and raise awareness on its risks. Last but not least, we develop solutions to defend against adversarial examples. We propose a consistency-check based method to detect adversarial examples by leveraging property of either the learning model or the data. We show two examples in the segmentation task (leveraging learning model) and video data (leveraging the data), respectively.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162944/1/xiaocw_1.pd

    RobustSwap: A Simple yet Robust Face Swapping Model against Attribute Leakage

    Full text link
    Face swapping aims at injecting a source image's identity (i.e., facial features) into a target image, while strictly preserving the target's attributes, which are irrelevant to identity. However, we observed that previous approaches still suffer from source attribute leakage, where the source image's attributes interfere with the target image's. In this paper, we analyze the latent space of StyleGAN and find the adequate combination of the latents geared for face swapping task. Based on the findings, we develop a simple yet robust face swapping model, RobustSwap, which is resistant to the potential source attribute leakage. Moreover, we exploit the coordination of 3DMM's implicit and explicit information as a guidance to incorporate the structure of the source image and the precise pose of the target image. Despite our method solely utilizing an image dataset without identity labels for training, our model has the capability to generate high-fidelity and temporally consistent videos. Through extensive qualitative and quantitative evaluations, we demonstrate that our method shows significant improvements compared with the previous face swapping models in synthesizing both images and videos. Project page is available at https://robustswap.github.io/Comment: 21 page

    Spatiotemporal Video Quality Assessment Method via Multiple Feature Mappings

    Get PDF
    Progressed video quality assessment (VQA) methods aim to evaluate the perceptual quality of videos in many applications but often prompt to increase computational complexity. Problems derive from the complexity of the distorted videos that are of significant concern in the communication industry, as well as the spatial-temporal content of the two-fold (spatial and temporal) distortion. Therefore, the findings of the study indicate that the information in the spatiotemporal slice (STS) images are useful in measuring video distortion. This paper mainly focuses on developing on a full reference video quality assessment algorithm estimator that integrates several features of spatiotemporal slices (STSS) of frames to form a high-performance video quality. This research work aims to evaluate video quality by utilizing several VQA databases by the following steps: (1) we first arrange the reference and test video sequences into a spatiotemporal slice representation. A collection of spatiotemporal feature maps were computed on each reference-test video. These response features are then processed by using a Structural Similarity (SSIM) to form a local frame quality.  (2) To further enhance the quality assessment, we combine the spatial feature maps with the spatiotemporal feature maps and propose the VQA model, named multiple map similarity feature deviation (MMSFD-STS). (3) We apply a sequential pooling strategy to assemble the quality indices of frames in the video quality scoring. (4) Extensive evaluations on video quality databases show that the proposed VQA algorithm achieves better/competitive performance as compared with other state- of- the- art methods

    Aprendizado de variedades para a síntese de áudio espacial

    Get PDF
    Orientadores: Luiz César Martini, Bruno Sanches MasieroTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O objetivo do áudio espacial gerado com a técnica binaural é simular uma fonte sonora em localizações espaciais arbitrarias através das Funções de Transferência Relativas à Cabeça (HRTFs) ou também chamadas de Funções de Transferência Anatômicas. As HRTFs modelam a interação entre uma fonte sonora e a antropometria de uma pessoa (e.g., cabeça, torso e orelhas). Se filtrarmos uma fonte de áudio através de um par de HRTFs (uma para cada orelha), o som virtual resultante parece originar-se de uma localização espacial específica. Inspirados em nossos resultados bem sucedidos construindo uma aplicação prática de reconhecimento facial voltada para pessoas com deficiência visual que usa uma interface de usuário baseada em áudio espacial, neste trabalho aprofundamos nossa pesquisa para abordar vários aspectos científicos do áudio espacial. Neste contexto, esta tese analisa como incorporar conhecimentos prévios do áudio espacial usando uma nova representação não-linear das HRTFs baseada no aprendizado de variedades para enfrentar vários desafios de amplo interesse na comunidade do áudio espacial, como a personalização de HRTFs, a interpolação de HRTFs e a melhoria da localização de fontes sonoras. O uso do aprendizado de variedades para áudio espacial baseia-se no pressuposto de que os dados (i.e., as HRTFs) situam-se em uma variedade de baixa dimensão. Esta suposição também tem sido de grande interesse entre pesquisadores em neurociência computacional, que argumentam que as variedades são cruciais para entender as relações não lineares subjacentes à percepção no cérebro. Para todas as nossas contribuições usando o aprendizado de variedades, a construção de uma única variedade entre os sujeitos através de um grafo Inter-sujeito (Inter-subject graph, ISG) revelou-se como uma poderosa representação das HRTFs capaz de incorporar conhecimento prévio destas e capturar seus fatores subjacentes. Além disso, a vantagem de construir uma única variedade usando o nosso ISG e o uso de informações de outros indivíduos para melhorar o desempenho geral das técnicas aqui propostas. Os resultados mostram que nossas técnicas baseadas no ISG superam outros métodos lineares e não-lineares nos desafios de áudio espacial abordados por esta teseAbstract: The objective of binaurally rendered spatial audio is to simulate a sound source in arbitrary spatial locations through the Head-Related Transfer Functions (HRTFs). HRTFs model the direction-dependent influence of ears, head, and torso on the incident sound field. When an audio source is filtered through a pair of HRTFs (one for each ear), a listener is capable of perceiving a sound as though it were reproduced at a specific location in space. Inspired by our successful results building a practical face recognition application aimed at visually impaired people that uses a spatial audio user interface, in this work we have deepened our research to address several scientific aspects of spatial audio. In this context, this thesis explores the incorporation of spatial audio prior knowledge using a novel nonlinear HRTF representation based on manifold learning, which tackles three major challenges of broad interest among the spatial audio community: HRTF personalization, HRTF interpolation, and human sound localization improvement. Exploring manifold learning for spatial audio is based on the assumption that the data (i.e. the HRTFs) lies on a low-dimensional manifold. This assumption has also been of interest among researchers in computational neuroscience, who argue that manifolds are crucial for understanding the underlying nonlinear relationships of perception in the brain. For all of our contributions using manifold learning, the construction of a single manifold across subjects through an Inter-subject Graph (ISG) has proven to lead to a powerful HRTF representation capable of incorporating prior knowledge of HRTFs and capturing the underlying factors of spatial hearing. Moreover, the use of our ISG to construct a single manifold offers the advantage of employing information from other individuals to improve the overall performance of the techniques herein proposed. The results show that our ISG-based techniques outperform other linear and nonlinear methods in tackling the spatial audio challenges addressed by this thesisDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétrica2014/14630-9FAPESPCAPE
    corecore