1,651 research outputs found

    Metaheuristic approaches to virtual machine placement in cloud computing: a review

    Get PDF

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Clustering composite SaaS components in Cloud computing using a Grouping Genetic Algorithm

    Get PDF
    Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA

    An Energy Aware Resource Utilization Framework to Control Traffic in Cloud Network and Overloads

    Get PDF
    Energy consumption in cloud computing occur due to the unreasonable way in which tasks are scheduled. So energy aware task scheduling is a major concern in cloud computing as energy consumption results into significant waste of energy, reduce the profit margin and also high carbon emissions which is not environmentally sustainable. Hence, energy efficient task scheduling solutions are required to attain variable resource management, live migration, minimal virtual machine design, overall system efficiency, reduction in operating costs, increasing system reliability, and prompting environmental protection with minimal performance overhead. This paper provides a comprehensive overview of the energy efficient techniques and approaches and proposes the energy aware resource utilization framework to control traffic in cloud networks and overloads

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Efficient Energy Management in Cloud Data center using VM Consolidation

    Get PDF
    Cloud computing is a model which can fast provisioned and released the computing resources by using minimum number of management effort. This can be done by the user without doing any communication with the cloud service providers. Cloud provide the computing resources, on-demand network access which is pooled together and it can be provisioned dynamically according to the user needs. Due to the large application, more number of computing nodes are required. A large amount of electrical energy is consumed due to the establishment of the data center. There is a problem of carbon dioxide emissions and increasing cost of operation due to the formation of large data center. A consolidation of virtual machines technique is proposed in our thesis to reduce the energy consumption and to maximize the utilization of the computing resources in the data center. Several virtual machines are taken together into a single physical machine in the consolidation technique and it helps to decrease the consumption of energy by putting idle server into inactive mode. A number of active hosts is minimized by continuously reallocating VMs using live migration. In each migration, Service Level Agreement(SLA) violations may occur, hence it is required to reduce the number of migrations.In order to satisfy quality of services in cloud computing environment, our proposed techniques mainly performs the following functions:(i)reducing the consumption of energy, (ii) minimize the number of migrations and (iii) minimize the percentage of SLA violations. Initially we detect whether any host is overloaded or not. The Overloaded host is detected by considering CPU utilization as a threshold Value. If an overloaded host is detected then some virtual machines are migrated from it by using VM selection policy. After selection of the VMs, the next step is to place the new VMs. For VM placement, the greedy algorithms such as Best Fit Decreasing(BFD) and Modified First Fit Decreasing(MFFD) are used in this thesis. The proposed techniques are compared with the existing EEDVM and PALVM techniques. Using proposed AUTREC technique there is 8% improved in energy consumption, 3% in number of migrations, 10% in SLA violation and 12% in host shutdown as compared to EEDVM technique. Using proposed DUTREC technique there is 9% improved in energy consumption, 6% in number of migrations, 20% in SLA violation and 13% in host shutdown as compared to PALVM technique

    Energy Efficient Virtual Machine Migration in Cloud Data Centers

    Get PDF
    Cloud computing services have been on the rise over the past few decades, which has led to an increase in the number of data centers worldwide which increasingly consume more and more amount of energy for their operation, leading to high carbon dioxide emissions and also high operation costs. Cloud computing infrastructures are designed to support the accessibility and deployment of various service oriented applications by the users. The resources are the major source of the power consumption in data centers along with air conditioning and cooling equipment. Moreover the energy consumption in the cloud is proportional to the resource utilization and data centers are almost the worlds highest consumers of electricity. It is therefore, the need of the hour to devise efficient consolidation schemes for the cloud model to minimize energy and increase Return of Investment(ROI) for the users by decreasing the operating costs. The consolidation problem is NP-complete in nature, which requires heuristic techniques to get a sub-optimal solution. The complexity of the problem increases with increase in cloud infrastructure. We have proposed a new consolidation scheme for the virtual machines(VMs) by improving the host overload detection phase of the scheme. The resulting scheme is effective in reducing the energy and the level of Service Level Agreement(SLA) violations both, to a considerable extent. For testing the performance of our implementation on cloud we need a simulation environment that can provide us an environment with system and behavioural modelling of the actual cloud computing components, and can generate results that can help us in the analysis so that we can deploy them on actual clouds. CloudSim is one such simulation toolkit that allows us to test and analyse our allocation and selection algorithms. In this thesis we have used CloudSim version 3.0.3 to test and analyse our policies and modifications in the current policies. The advantages of using CloudSim 3.0.3 is that it takes very less effort and time to implement cloud-based application and we can test the performance of application services in heterogeneous Cloud environments. The observations are validated by simulating the experiment using the CLoudSim framework and the data provided by PlanetLab
    corecore