2,600 research outputs found

    Analyticity of the Free Energy of a Closed 3-Manifold

    Get PDF
    The free energy of a closed 3-manifold is a 2-parameter formal power series which encodes the perturbative Chern-Simons invariant (also known as the LMO invariant) of a closed 3-manifold with gauge group U(N) for arbitrary NN. We prove that the free energy of an arbitrary closed 3-manifold is uniformly Gevrey-1. As a corollary, it follows that the genus gg part of the free energy is convergent in a neighborhood of zero, independent of the genus. Our results follow from an estimate of the LMO invariant, in a particular gauge, and from recent results of Bender-Gao-Richmond on the asymptotics of the number of rooted maps for arbitrary genus. We illustrate our results with an explicit formula for the free energy of a Lens space. In addition, using the Painlev\'e differential equation, we obtain an asymptotic expansion for the number of cubic graphs to all orders, stengthening the results of Bender-Gao-Richmond.Comment: This is a contribution to the Special Issue on Deformation Quantization, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

    Get PDF
    The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2O(k)O(n)2^{O(k)} O(n). We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. At the same time, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (SODA '95 / JGAA '99)

    Schnyder woods for higher genus triangulated surfaces, with applications to encoding

    Full text link
    Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus gg and compute a so-called gg-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus gg and nn vertices in 4n+O(glog(n))4n+O(g \log(n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g)O((n+g)g), hence are linear when the genus is fixed.Comment: 27 pages, to appear in a special issue of Discrete and Computational Geometr

    Dichromatic polynomials and Potts models summed over rooted maps

    Full text link
    We consider the sum of dichromatic polynomials over non-separable rooted planar maps, an interesting special case of which is the enumeration of such maps. We present some known results and derive new ones. The general problem is equivalent to the qq-state Potts model randomized over such maps. Like the regular ferromagnetic lattice models, it has a first-order transition when qq is greater than a critical value qcq_c, but qcq_c is much larger - about 72 instead of 4.Comment: 29 pages, three figures changes in App D, introduction and acknowledgement
    corecore