399,258 research outputs found

    On mining complex sequential data by means of FCA and pattern structures

    Get PDF
    Nowadays data sets are available in very complex and heterogeneous ways. Mining of such data collections is essential to support many real-world applications ranging from healthcare to marketing. In this work, we focus on the analysis of "complex" sequential data by means of interesting sequential patterns. We approach the problem using the elegant mathematical framework of Formal Concept Analysis (FCA) and its extension based on "pattern structures". Pattern structures are used for mining complex data (such as sequences or graphs) and are based on a subsumption operation, which in our case is defined with respect to the partial order on sequences. We show how pattern structures along with projections (i.e., a data reduction of sequential structures), are able to enumerate more meaningful patterns and increase the computing efficiency of the approach. Finally, we show the applicability of the presented method for discovering and analyzing interesting patient patterns from a French healthcare data set on cancer. The quantitative and qualitative results (with annotations and analysis from a physician) are reported in this use case which is the main motivation for this work. Keywords: data mining; formal concept analysis; pattern structures; projections; sequences; sequential data.Comment: An accepted publication in International Journal of General Systems. The paper is created in the wake of the conference on Concept Lattice and their Applications (CLA'2013). 27 pages, 9 figures, 3 table

    A Constraint Programming Approach for Mining Sequential Patterns in a Sequence Database

    Full text link
    Constraint-based pattern discovery is at the core of numerous data mining tasks. Patterns are extracted with respect to a given set of constraints (frequency, closedness, size, etc). In the context of sequential pattern mining, a large number of devoted techniques have been developed for solving particular classes of constraints. The aim of this paper is to investigate the use of Constraint Programming (CP) to model and mine sequential patterns in a sequence database. Our CP approach offers a natural way to simultaneously combine in a same framework a large set of constraints coming from various origins. Experiments show the feasibility and the interest of our approach

    Discovering Exclusive Patterns in Frequent Sequences

    Get PDF
    This paper presents a new concept for pattern discovery in frequent sequences with potentially interesting applications. Based on data mining, the approach aims to discover exclusive sequential patterns (ESP) by checking the relative exclusion of patterns across data sequences. ESP mining pursues the post-processing of sequential patterns and augments existing work on structural relations patterns mining. A three phase ESP mining method is proposed together with component algorithms, where a running worked example explains the process. Experiments are performed on real-world and synthetic datasets which showcase the results of ESP mining and demonstrate its effectiveness, illuminating the theories developed. An outline case study in workflow modelling gives some insight into future applicability

    Prefix-Projection Global Constraint for Sequential Pattern Mining

    Full text link
    Sequential pattern mining under constraints is a challenging data mining task. Many efficient ad hoc methods have been developed for mining sequential patterns, but they are all suffering from a lack of genericity. Recent works have investigated Constraint Programming (CP) methods, but they are not still effective because of their encoding. In this paper, we propose a global constraint based on the projected databases principle which remedies to this drawback. Experiments show that our approach clearly outperforms CP approaches and competes well with ad hoc methods on large datasets

    A Three-phased Online Association Rule Mining Approach for Diverse Mining Requests

    Get PDF
    In the past, most incremental mining and online mining algorithms considered finding the set of association rules or patterns consistent with the entire set of data inserted so far. Users can not easily obtain the results from their only interested portion of data. For providing ad-hoc, query-driven and online mining supports, we first propose a relation called multidimensional pattern relation to structurally and systematically store the context information and the mining information for later analysis. Each tuple in the relation comes from an inserted dataset in the database. This concept is similar to the construction of a data warehouse for OLAP. However, unlike the summarized information of fact attributes in a data warehouse, the mined patterns in the multidimensional pattern relation can not be directly aggregated to satisfy users’ mining requests. We then develop an online mining approach called Three-phased Online Association Rule Mining (TOARM) based on the proposed multidimensional pattern relation to support online generation of association rules under multidimensional considerations. Experiments for both homogeneous and heterogeneous datasets are made, with results showing the effectiveness of the proposed approach
    • 

    corecore