83,754 research outputs found

    The Application of Fuzzy Logic Controller to Compute a Trust Level for Mobile Agents in a Smart Home

    Get PDF
    Agents that travel through many hosts may cause a threat on the security of the visited hosts. Assets, system resources, and the reputation of the host are few possible targets for such an attack. The possibility for multi-hop agents to be malicious is higher compared to the one-hop or two-hop boomerang agents. The travel history is one of the factors that may allow a server to evaluate the trustworthiness of an agent. This paper proposes a technique to define levels of trust for multi-hop agents that are roaming in a smart home environment. These levels of trust are used later to determine actions taken by a host at the arrival of an agent. This technique uses fuzzy logic as a method to calculate levels of trust and to define protective actions in regard to those levels

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Hedonic Coalition Formation for Distributed Task Allocation among Wireless Agents

    Full text link
    Autonomous wireless agents such as unmanned aerial vehicles or mobile base stations present a great potential for deployment in next-generation wireless networks. While current literature has been mainly focused on the use of agents within robotics or software applications, we propose a novel usage model for self-organizing agents suited to wireless networks. In the proposed model, a number of agents are required to collect data from several arbitrarily located tasks. Each task represents a queue of packets that require collection and subsequent wireless transmission by the agents to a central receiver. The problem is modeled as a hedonic coalition formation game between the agents and the tasks that interact in order to form disjoint coalitions. Each formed coalition is modeled as a polling system consisting of a number of agents which move between the different tasks present in the coalition, collect and transmit the packets. Within each coalition, some agents can also take the role of a relay for improving the packet success rate of the transmission. The proposed algorithm allows the tasks and the agents to take distributed decisions to join or leave a coalition, based on the achieved benefit in terms of effective throughput, and the cost in terms of delay. As a result of these decisions, the agents and tasks structure themselves into independent disjoint coalitions which constitute a Nash-stable network partition. Moreover, the proposed algorithm allows the agents and tasks to adapt the topology to environmental changes such as the arrival/removal of tasks or the mobility of the tasks. Simulation results show how the proposed algorithm improves the performance, in terms of average player (agent or task) payoff, of at least 30.26% (for a network of 5 agents with up to 25 tasks) relatively to a scheme that allocates nearby tasks equally among agents.Comment: to appear, IEEE Transactions on Mobile Computin

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    AMISEC: Leveraging Redundancy and Adaptability to Secure AmI Applications

    Get PDF
    Security in Ambient Intelligence (AmI) poses too many challenges due to the inherently insecure nature of wireless sensor nodes. However, there are two characteristics of these environments that can be used effectively to prevent, detect, and confine attacks: redundancy and continuous adaptation. In this article we propose a global strategy and a system architecture to cope with security issues in AmI applications at different levels. Unlike in previous approaches, we assume an individual wireless node is vulnerable. We present an agent-based architecture with supporting services that is proven to be adequate to detect and confine common attacks. Decisions at different levels are supported by a trust-based framework with good and bad reputation feedback while maintaining resistance to bad-mouthing attacks. We also propose a set of services that can be used to handle identification, authentication, and authorization in intelligent ambients. The resulting approach takes into account practical issues, such as resource limitation, bandwidth optimization, and scalability

    IPv6 Network Mobility

    Get PDF
    Network Authentication, Authorization, and Accounting has been used since before the days of the Internet as we know it today. Authentication asks the question, “Who or what are you?” Authorization asks, “What are you allowed to do?” And fi nally, accounting wants to know, “What did you do?” These fundamental security building blocks are being used in expanded ways today. The fi rst part of this two-part series focused on the overall concepts of AAA, the elements involved in AAA communications, and highlevel approaches to achieving specifi c AAA goals. It was published in IPJ Volume 10, No. 1[0]. This second part of the series discusses the protocols involved, specifi c applications of AAA, and considerations for the future of AAA
    corecore