903 research outputs found

    Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion

    Full text link
    Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variables of a mechanical model that are imposed through a time-invariant feedback controller. One of their roles is to synchronize the robot's joints to an internal gait phasing variable. A second role is to induce a low dimensional system, the zero dynamics, that captures the underactuated aspects of a robot's model, without any approximations. To enhance intuition, the relation between physical constraints and virtual constraints is first established. From here, the hybrid zero dynamics of an underactuated bipedal model is developed, and its fundamental role in the design of asymptotically stable walking motions is established. The chapter includes numerous references to robots on which the highlighted techniques have been implemented.Comment: 17 pages, 4 figures, bookchapte

    Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot

    Get PDF
    This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3D (spatial) bipedal robot consisting of a torso, two legs, and passive (unactuated) point feet. The contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and 6 actuators. The interest of studying robots with point feet is that the robot's natural dynamics must be explicitly taken into account to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit. This method allows the computations to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted Poincar\'e map of the hybrid zero dynamics. Three strategies are explored. The first strategy consists of imposing a stability condition during the search of a periodic gait by optimization. The second strategy uses an event-based controller. In the third approach, the effect of output selection is discussed and a pertinent choice of outputs is proposed, leading to stabilization without the use of a supplemental event-based controller

    Stability analysis and control for bipedal locomotion using energy methods

    Get PDF
    In this thesis, we investigate the stability of limit cycles of passive dynamic walking. The formation process of the limit cycles is approached from the view of energy interaction. We introduce for the first time the notion of the energy portrait analysis originated from the phase portrait. The energy plane is spanned by the total energy of the system and its derivative, and different energy trajectories represent the energy portrait in the plane. One of the advantages of this method is that the stability of the limit cycles can be easily shown in a 2D plane regardless of the dimension of the system. The energy portrait of passive dynamic walking reveals that the limit cycles are formed by the interaction between energy loss and energy gain during each cycle, and they are equal at equilibria in the energy plane. In addition, the energy portrait is exploited to examine the existence of semi-passive limit cycles generated using the energy supply only at the take-off phase. It is shown that the energy interaction at the ground contact compensates for the energy supply, which makes the total energy invariant yielding limit cycles. This result means that new limit cycles can be generated according to the energy supply without changing the ground slope, and level ground walking, whose energy gain at the contact phase is always zero, can be achieved without actuation during the swing phase. We design multiple switching controllers by virtue of this property to increase the basin of attraction. Multiple limit cycles are linearized using the Poincare map method, and the feedback gains are computed taking into account the robustness and actuator saturation. Once a trajectory diverges from a basin of attraction, we switch the current controller to one that includes the trajectory in its basin of attraction. Numerical simulations confirm that a set of limit cycles can be used to increase the basin of attraction further by switching the controllers one after another. To enhance our knowledge of the limit cycles, we performed sophisticated simulations and found all stable and unstable limit cycles from the various ground slopes not only for the symmetric legs but also for the unequal legs that cause gait asymmetries. As a result, we present a novel classification of the passive limit cycles showing six distinct groups that are consecutive and cyclical

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Controlled walking of planar bipedal robots

    Get PDF

    Robust compound control of dynamic bipedal robots

    Get PDF
    This paper presents a robust compound control strategy to produce a stable gait in dynamic bipedal robots under random perturbations. The proposed control strategy consists of two interactive loops: an adaptive trajectory generator and a robust trajectory tracking controller. The adaptive trajectory generator produces references for the robot controlled joints without a-priori knowledge of the terrain features and minimizes the effects of disturbances and model uncertainties during the gait, particularly during the support-leg exchange. The trajectory tracking controller is a non-switching robust multivariable generalized proportional integral (GPI) controller. The GPI controller rejects external disturbances and uncertainties faced by the robot during the swing walking phase. The proposed control strategy was evaluated on the numerical model of a five-link planar bipedal robot with one degree of under-actuation, four actuators, and point feet. The results showed robust performance and stability under external disturbances and model parameter uncertainties on uneven terrain with uphills and downhills. The stability of the gait was proven through the computation of a Poincaré return map for a hybrid zero dynamics with uncertainties (HZDU) model, which shows convergence to a bounded neighborhood of a nominal orbital periodic behavior
    • …
    corecore