24,970 research outputs found

    Optimization-Based Artificial Bee Colony Algorithm for Data Collection in Large-Scale Mobile Wireless Sensor Networks

    Get PDF
    Data collection is a fundamental operation in various mobile wireless sensor networks (MWSN) applications. The energy of nodes around the Sink can be untimely depleted owing to the fact that sensor nodes must transmit vast amounts of data, readily forming a bottleneck in energy consumption; mobile wireless sensor networks have been designed to address this issue. In this study, we focused on a large-scale and intensive MWSN which allows a certain amount of data latency by investigating mobile Sink balance from three aspects: data collection maximization, mobile path length minimization, and network reliability optimization. We also derived a corresponding formula to represent the MWSN and proved that it represents an NP-hard problem. Traditional data collection methods only focus on increasing the amount data collection or reducing the overall network energy consumption, which is why we designed the proposed heuristic algorithm to jointly consider cluster head selection, the routing path from ordinary nodes to the cluster head node, and mobile Sink path planning optimization. The proposed data collection algorithm for mobile Sinks is, in effect, based on artificial bee colony. Simulation results show that, in comparison with other algorithms, the proposed algorithm can effectively reduce data transmission, save energy, improve network data collection efficiency and reliability, and extend the network lifetime

    Energy Efficient Clustering and Routing in Mobile Wireless Sensor Network

    Get PDF
    A critical need in Mobile Wireless Sensor Network (MWSN) is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes a novel hybrid multipath routing algorithm with an efficient clustering technique. A node is selected as cluster head if it has high surplus energy, better transmission range and least mobility. The Energy Aware (EA) selection mechanism and the Maximal Nodal Surplus Energy estimation technique incorporated in this algorithm improves the energy performance during routing. Simulation results can show that the proposed clustering and routing algorithm can scale well in dynamic and energy deficient mobile sensor network.Comment: 9 pages, 4 figure

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    An Enhanced Source Location Privacy based on Data Dissemination in Wireless Sensor Networks (DeLP)

    Get PDF
    open access articleWireless Sensor Network is a network of large number of nodes with limited power and computational capabilities. It has the potential of event monitoring in unattended locations where there is a chance of unauthorized access. The work that is presented here identifies and addresses the problem of eavesdropping in the exposed environment of the sensor network, which makes it easy for the adversary to trace the packets to find the originator source node, hence compromising the contextual privacy. Our scheme provides an enhanced three-level security system for source location privacy. The base station is at the center of square grid of four quadrants and it is surrounded by a ring of flooding nodes, which act as a first step in confusing the adversary. The fake node is deployed in the opposite quadrant of actual source and start reporting base station. The selection of phantom node using our algorithm in another quadrant provides the third level of confusion. The results show that Dissemination in Wireless Sensor Networks (DeLP) has reduced the energy utilization by 50% percent, increased the safety period by 26%, while providing a six times more packet delivery ratio along with a further 15% decrease in the packet delivery delay as compared to the tree-based scheme. It also provides 334% more safety period than the phantom routing, while it lags behind in other parameters due to the simplicity of phantom scheme. This work illustrates the privacy protection of the source node and the designed procedure may be useful in designing more robust algorithms for location privac

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method

    Distributed Recognition of Reference Nodes for Wireless Sensor Network Localization

    Get PDF
    All known localization techniques for wireless sensor and ad-hoc networks require certain set of reference nodes being used for position estimation. The anchor-free techniques in contrast to anchor-based do not require reference nodes called anchors to be placed in the network area before localization operation itself, but they can establish own reference coordinate system to be used for the relative position estimation. We observed that contemporary anchor-free localization algorithms achieve a low localization error, but dissipate significant energy reserves during the recognition of reference nodes used for the position estimation. Therefore, we have proposed the optimized anchor-free localization algorithm referred to as BRL (Boundary Recognition aided Localization), which achieves a low localization error and mainly reduces the communication cost of the reference nodes recognition phase. The proposed BRL algorithm was investigated throughout the extensive simulations on the database of networks with the different number of nodes and densities and was compared in terms of communication cost and localization error with the known related algorithms such as AFL and CRP. Through the extensive simulations we have observed network conditions where novel BRL algorithm excels in comparison with the state of art

    Analyzing Energy-efficiency and Route-selection of Multi-level Hierarchal Routing Protocols in WSNs

    Full text link
    The advent and development in the field of Wireless Sensor Networks (WSNs) in recent years has seen the growth of extremely small and low-cost sensors that possess sensing, signal processing and wireless communication capabilities. These sensors can be expended at a much lower cost and are capable of detecting conditions such as temperature, sound, security or any other system. A good protocol design should be able to scale well both in energy heterogeneous and homogeneous environment, meet the demands of different application scenarios and guarantee reliability. On this basis, we have compared six different protocols of different scenarios which are presenting their own schemes of energy minimizing, clustering and route selection in order to have more effective communication. This research is motivated to have an insight that which of the under consideration protocols suit well in which application and can be a guide-line for the design of a more robust and efficient protocol. MATLAB simulations are performed to analyze and compare the performance of LEACH, multi-level hierarchal LEACH and multihop LEACH.Comment: NGWMN with 7th IEEE Inter- national Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201
    • 

    corecore