21,694 research outputs found

    Implementing a tool for designing portable parallel programs

    Get PDF
    The Implementation aspects of a novel parallel programming model called Cluster-M is presented in this thesis. This model provides an environment for efficiently designing highly parallel portable software. The two main components of this model are Cluster-M Specifications and Cluster-M Representations. A Cluster-M Specification consists of a number of clustering levels emphasizing computation and communication requirements of a parallel solution to a given problem. A Cluster-M Representation on the other hand, represents a multi-layered partitioning of a system graph corresponding to the topology of the target architecture. A set of basic constructs essential for writing Cluster-M Specifications using PCN are presented. Also, a. C program for generating the Cluster-M Representations is shown. Cluster-M Specifications are to be mapped onto the Representations using a proposed mapping methodology. Using Cluster-M a single software can be ported among various parallel computing systems. This thesis concentrates on the implementation of the Specifications and the Representations

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    The PISCES 2 parallel programming environment

    Get PDF
    PISCES 2 is a programming environment for scientific and engineering computations on MIMD parallel computers. It is currently implemented on a flexible FLEX/32 at NASA Langley, a 20 processor machine with both shared and local memories. The environment provides an extended Fortran for applications programming, a configuration environment for setting up a run on the parallel machine, and a run-time environment for monitoring and controlling program execution. This paper describes the overall design of the system and its implementation on the FLEX/32. Emphasis is placed on several novel aspects of the design: the use of a carefully defined virtual machine, programmer control of the mapping of virtual machine to actual hardware, forces for medium-granularity parallelism, and windows for parallel distribution of data. Some preliminary measurements of storage use are included

    A Functional Architecture Approach to Neural Systems

    Get PDF
    The technology for the design of systems to perform extremely complex combinations of real-time functionality has developed over a long period. This technology is based on the use of a hardware architecture with a physical separation into memory and processing, and a software architecture which divides functionality into a disciplined hierarchy of software components which exchange unambiguous information. This technology experiences difficulty in design of systems to perform parallel processing, and extreme difficulty in design of systems which can heuristically change their own functionality. These limitations derive from the approach to information exchange between functional components. A design approach in which functional components can exchange ambiguous information leads to systems with the recommendation architecture which are less subject to these limitations. Biological brains have been constrained by natural pressures to adopt functional architectures with this different information exchange approach. Neural networks have not made a complete shift to use of ambiguous information, and do not address adequate management of context for ambiguous information exchange between modules. As a result such networks cannot be scaled to complex functionality. Simulations of systems with the recommendation architecture demonstrate the capability to heuristically organize to perform complex functionality

    Parallel Hierarchical Affinity Propagation with MapReduce

    Full text link
    The accelerated evolution and explosion of the Internet and social media is generating voluminous quantities of data (on zettabyte scales). Paramount amongst the desires to manipulate and extract actionable intelligence from vast big data volumes is the need for scalable, performance-conscious analytics algorithms. To directly address this need, we propose a novel MapReduce implementation of the exemplar-based clustering algorithm known as Affinity Propagation. Our parallelization strategy extends to the multilevel Hierarchical Affinity Propagation algorithm and enables tiered aggregation of unstructured data with minimal free parameters, in principle requiring only a similarity measure between data points. We detail the linear run-time complexity of our approach, overcoming the limiting quadratic complexity of the original algorithm. Experimental validation of our clustering methodology on a variety of synthetic and real data sets (e.g. images and point data) demonstrates our competitiveness against other state-of-the-art MapReduce clustering techniques
    corecore