50 research outputs found

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    PAPR Reduction in the OFDM Signal Using Selective Mapping

    Get PDF
    Nowadays Orthogonal Frequency Division Multip lexing is becoming more and more popular Because of it is attractive techniques for high data rate transmission. OFDM is widely used in 4G technologies in recent times. Main advantage of OFDM is that it uses orthogonal signals so removes inter - signal inter ference. PAPR ratio in OFDM is very high because it uses Multicarrier modulation, which is its main drawback. High PAPR means more power need at transmission side. PAPR can be decreased using various techniques such as clipping, selective mapping, etc. In this paper, criterion for new scheme selective mapping is introduced for PAPR reduction in OFD

    Boosted PTS Method with Mu-Law Companding Techniques for PAPR Reduction in OFDM Systems

    Get PDF
    This paper proposes an enhanced PAPR reduction technique which combines an enhanced PTS method with Mu-Law companding. The enhanced PTS method improves performances in both the partitioning and phase rotation steps. Enhancement in partitioning is achieved through a judicious incorporation of AP-PTS scheme into the IP-PTS. As for phase rotation, an optimal set of rotation vectors is derived based on the correlation properties of candidate signals. The PAPR reduction of this enhanced PTS method is further improved by annexing Mu-Law companding at the end of the enhanced PTS. This application of Mu-Law characteristic in the time domain of OFDM signal significantly improves the PAPR reduction capability of the approach. Simulation results show that the PAPR performance of the enhanced PTS method with Mu-Law companding technique on various scenarios with different modulation schemes is better than that of the PRP-PTS. This approach can be considered as a very attractive candidate for achieving a significant reduction of PAPR, while maintaining a low computational complexity
    corecore