662 research outputs found

    Twenty years of distributed port-Hamiltonian systems:A literature review

    Get PDF
    The port-Hamiltonian (pH) theory for distributed parameter systems has developed greatly in the past two decades. The theory has been successfully extended from finite-dimensional to infinite-dimensional systems through a lot of research efforts. This article collects the different research studies carried out for distributed pH systems. We classify over a hundred and fifty studies based on different research focuses ranging from modeling, discretization, control and theoretical foundations. This literature review highlights the wide applicability of the pH systems theory to complex systems with multi-physical domains using the same tools and language. We also supplement this article with a bibliographical database including all papers reviewed in this paper classified in their respective groups

    Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as port-Hamiltonian system

    Get PDF
    The anisotropic and heterogeneous N-dimensional wave equation, controlled and observed at the boundary, is considered as a port-Hamiltonian system. The recent structure-preserving Partitioned Finite Element Method is applied, leading directly to a finite-dimensional port-Hamiltonian system, and its numerical analysis is done in a general framework, under usual assumptions for finite element. Compatibility conditions are then exhibited to reach the best trade off between the convergence rate and the number of degrees of freedom for both the state error and the Hamiltonian error. Numerical simulations in 2D are performed to illustrate the optimality of the main theorems among several choices of classical finite element families.Comment: 36 pages, 1 figure, submitte

    Hybrid finite difference/finite element immersed boundary method

    Get PDF
    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach employs a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach

    Port-Hamiltonian formulation and structure-preserving discretization of hyperelastic strings

    Full text link
    Port-Hamiltonian (PH) systems provide a framework for modeling, analysis and control of complex dynamical systems, where the complexity might result from multi-physical couplings, non-trivial domains and diverse nonlinearities. A major benefit of the PH representation is the explicit formulation of power interfaces, so-called ports, which allow for a power-preserving interconnection of subsystems to compose flexible multibody systems in a modular way. In this work, we present a PH representation of geometrically exact strings with nonlinear material behaviour. Furthermore, using structure-preserving discretization techniques a corresponding finite-dimensional PH state space model is developed. Applying mixed finite elements, the semi-discrete model retains the PH structure and the ports (pairs of velocities and forces) on the discrete level. Moreover, discrete derivatives are used in order to obtain an energy-consistent time-stepping method. The numerical properties of the newly devised model are investigated in a representative example. The developed PH state space model can be used for structure-preserving simulation and model order reduction as well as feedforward and feedback control design.Comment: Submitted as a proceeding to the ECCOMAS Thematic Conference on Multibody Dynamics 202

    Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control

    Get PDF
    We consider the design of structure-preserving discretization methods for the solution of systems of boundary controlled Partial Differential Equations (PDEs) thanks to the port-Hamiltonian formalism. We first provide a novel general structure of infinite-dimensional port-Hamiltonian systems (pHs) for which the Partitioned Finite Element Method (PFEM) straightforwardly applies. The proposed strategy is applied to abstract multidimensional linear hyperbolic and parabolic systems of PDEs. Then we show that instructional model problems based on the wave equation, Mindlin equation and heat equation fit within this unified framework. Secondly, we introduce the ongoing project SCRIMP (Simulation and Control of Interactions in Multi-Physics) developed for the numerical simulation of infinite-dimensional pHs. SCRIMP notably relies on the FEniCS open-source computing platform for the finite element spatial discretization. Finally, we illustrate how to solve the considered model problems within this framework by carefully explaining the methodology. As additional support, companion interactive Jupyter notebooks are available

    A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control

    Get PDF
    Many boundary controlled and observed Partial Differential Equations can be represented as port-Hamiltonian systems with dissipation, involving a Stokes-Dirac geometrical structure together with constitutive relations. The Partitioned Finite Element Method, introduced in Cardoso-Ribeiro et al. (2018), is a structure preserving numerical method which defines an underlying Dirac structure, and constitutive relations in weak form, leading to finite-dimensional port-Hamiltonian Differential Algebraic systems (pHDAE). Different types of dissipation are examined: internal damping, boundary damping and also diffusion models
    corecore