10,620 research outputs found

    Characteristic of partition-circuit matroid through approximation number

    Full text link
    Rough set theory is a useful tool to deal with uncertain, granular and incomplete knowledge in information systems. And it is based on equivalence relations or partitions. Matroid theory is a structure that generalizes linear independence in vector spaces, and has a variety of applications in many fields. In this paper, we propose a new type of matroids, namely, partition-circuit matroids, which are induced by partitions. Firstly, a partition satisfies circuit axioms in matroid theory, then it can induce a matroid which is called a partition-circuit matroid. A partition and an equivalence relation on the same universe are one-to-one corresponding, then some characteristics of partition-circuit matroids are studied through rough sets. Secondly, similar to the upper approximation number which is proposed by Wang and Zhu, we define the lower approximation number. Some characteristics of partition-circuit matroids and the dual matroids of them are investigated through the lower approximation number and the upper approximation number.Comment: 12 page

    Parametric matroid of rough set

    Full text link
    Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a combinatorial generalization of linear independence in vector spaces. In this paper, we define a parametric set family, with any subset of a universe as its parameter, to connect rough sets and matroids. On the one hand, for a universe and an equivalence relation on the universe, a parametric set family is defined through the lower approximation operator. This parametric set family is proved to satisfy the independent set axiom of matroids, therefore it can generate a matroid, called a parametric matroid of the rough set. Three equivalent representations of the parametric set family are obtained. Moreover, the parametric matroid of the rough set is proved to be the direct sum of a partition-circuit matroid and a free matroid. On the other hand, since partition-circuit matroids were well studied through the lower approximation number, we use it to investigate the parametric matroid of the rough set. Several characteristics of the parametric matroid of the rough set, such as independent sets, bases, circuits, the rank function and the closure operator, are expressed by the lower approximation number.Comment: 15 page

    Knowledge Engineering from Data Perspective: Granular Computing Approach

    Get PDF
    The concept of rough set theory is a mathematical approach to uncertainly and vagueness in data analysis, introduced by Zdzislaw Pawlak in 1980s. Rough set theory assumes the underlying structure of knowledge is a partition. We have extended Pawlak’s concept of knowledge to coverings. We have taken a soft approach regarding any generalized subset as a basic knowledge. We regard a covering as basic knowledge from which the theory of knowledge approximations and learning, knowledge dependency and reduct are developed

    Covering matroid

    Full text link
    In this paper, we propose a new type of matroids, namely covering matroids, and investigate the connections with the second type of covering-based rough sets and some existing special matroids. Firstly, as an extension of partitions, coverings are more natural combinatorial objects and can sometimes be more efficient to deal with problems in the real world. Through extending partitions to coverings, we propose a new type of matroids called covering matroids and prove them to be an extension of partition matroids. Secondly, since some researchers have successfully applied partition matroids to classical rough sets, we study the relationships between covering matroids and covering-based rough sets which are an extension of classical rough sets. Thirdly, in matroid theory, there are many special matroids, such as transversal matroids, partition matroids, 2-circuit matroid and partition-circuit matroids. The relationships among several special matroids and covering matroids are studied.Comment: 15 page

    Information Flow Model for Commercial Security

    Get PDF
    Information flow in Discretionary Access Control (DAC) is a well-known difficult problem. This paper formalizes the fundamental concepts and establishes a theory of information flow security. A DAC system is information flow secure (IFS), if any data never flows into the hands of owner’s enemies (explicitly denial access list.

    Knowledge Engineering in Search Engines

    Get PDF
    With large amounts of information being exchanged on the Internet, search engines have become the most popular tools for helping users to search and filter this information. However, keyword-based search engines sometimes obtain information, which does not meet user’ needs. Some of them are even irrelevant to what the user queries. When the users get query results, they have to read and organize them by themselves. It is not easy for users to handle information when a search engine returns several million results. This project uses a granular computing approach to find knowledge structures of a search engine. The project focuses on knowledge engineering components of a search engine. Based on the earlier work of Dr. Lin and his former student [1], it represents concepts in the Web by simplicial complexes. We found that to represent simplicial complexes adequately, we only need the maximal simplexes. Therefore, this project focuses on building maximal simplexes. Since it is too costly to analyze all Web pages or documents, the project uses the sampling method to get sampling documents. The project constructs simplexes of documents and uses the simplexes to find maximal simplexes. These maximal simplexes are regarded as primitive concepts that can represent Web pages or documents. The maximal simplexes can be used to build an index of a search engine in the future

    Distributed Functional Scalar Quantization Simplified

    Full text link
    Distributed functional scalar quantization (DFSQ) theory provides optimality conditions and predicts performance of data acquisition systems in which a computation on acquired data is desired. We address two limitations of previous works: prohibitively expensive decoder design and a restriction to sources with bounded distributions. We rigorously show that a much simpler decoder has equivalent asymptotic performance as the conditional expectation estimator previously explored, thus reducing decoder design complexity. The simpler decoder has the feature of decoupled communication and computation blocks. Moreover, we extend the DFSQ framework with the simpler decoder to acquire sources with infinite-support distributions such as Gaussian or exponential distributions. Finally, through simulation results we demonstrate that performance at moderate coding rates is well predicted by the asymptotic analysis, and we give new insight on the rate of convergence

    Automatic generation of fuzzy classification rules using granulation-based adaptive clustering

    Get PDF
    A central problem of fuzzy modelling is the generation of fuzzy rules that fit the data to the highest possible extent. In this study, we present a method for automatic generation of fuzzy rules from data. The main advantage of the proposed method is its ability to perform data clustering without the requirement of predefining any parameters including number of clusters. The proposed method creates data clusters at different levels of granulation and selects the best clustering results based on some measures. The proposed method involves merging clusters into new clusters that have a coarser granulation. To evaluate performance of the proposed method, three different datasets are used to compare performance of the proposed method to other classifiers: SVM classifier, FCM fuzzy classifier, subtractive clustering fuzzy classifier. Results show that the proposed method has better classification results than other classifiers for all the datasets used
    • …
    corecore