10,478 research outputs found

    Efficient Computations of a Security Index for False Data Attacks in Power Networks

    Full text link
    The resilience of Supervisory Control and Data Acquisition (SCADA) systems for electric power networks for certain cyber-attacks is considered. We analyze the vulnerability of the measurement system to false data attack on communicated measurements. The vulnerability analysis problem is shown to be NP-hard, meaning that unless P=NPP = NP there is no polynomial time algorithm to analyze the vulnerability of the system. Nevertheless, we identify situations, such as the full measurement case, where it can be solved efficiently. In such cases, we show indeed that the problem can be cast as a generalization of the minimum cut problem involving costly nodes. We further show that it can be reformulated as a standard minimum cut problem (without costly nodes) on a modified graph of proportional size. An important consequence of this result is that our approach provides the first exact efficient algorithm for the vulnerability analysis problem under the full measurement assumption. Furthermore, our approach also provides an efficient heuristic algorithm for the general NP-hard problem. Our results are illustrated by numerical studies on benchmark systems including the IEEE 118-bus system

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    Fast multi-image matching via density-based clustering

    Full text link
    We consider the problem of finding consistent matches across multiple images. Previous state-of-the-art solutions use constraints on cycles of matches together with convex optimization, leading to computationally intensive iterative algorithms. In this paper, we propose a clustering-based formulation. We first rigorously show its equivalence with the previous one, and then propose QuickMatch, a novel algorithm that identifies multi-image matches from a density function in feature space. We use the density to order the points in a tree, and then extract the matches by breaking this tree using feature distances and measures of distinctiveness. Our algorithm outperforms previous state-of-the-art methods (such as MatchALS) in accuracy, and it is significantly faster (up to 62 times faster on some bechmarks), and can scale to large datasets (with more than twenty thousands features).Accepted manuscriptSupporting documentatio
    corecore