3,434 research outputs found

    PSO-embedded adaptive Kriging surrogate model method for structural reliability analysis with small failure probability

    Full text link
    In the present study, a novel adaptive surrogate model method is proposed for the analysis of structural reliability with small failure probability. In order to address the problems with conventional adaptive Kriging surrogate model method based on candidate sample pool, the adaptive Kriging surrogate model method which integrates Particle Swarm Optimization algorithm (PSO) is put forward. In the course of implementation, the surrogate model is gradually improved through an iterative process and the high-value samples are selected to update the surrogate model through an optimization solution carried out by using PSO. Numerical examples are used to evaluate the computational performance of the proposed method, and a further discussion is conducted around the revision to the learning function. The results show that the introduction of PSO not only increases the possibility of obtaining high-value samples, but also significantly improves the solution accuracy of the adaptive Kriging surrogate model method for structural reliability analysis. Meanwhile, the proposed method overcomes the problem caused by the conventional candidate pool-based selection method through the optimization algorithm to determine high-value samples, achieving an excellent performance in dealing with the small failure probability. In addition, the proposed method is applicable to achieve a reasonable balance between solution accuracy and efficiency through the revised learning function which takes into account local neighborhood effects

    Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms

    Get PDF
    This paper focuses on the day-ahead allocation of operation reserve considering wind power prediction error and network transmission constraints in a composite power system. A two-level model that solves the allocation problem is presented. The upper model allocates operation reserve among subsystems from the economic point of view. In the upper model, transmission constraints of tielines are formulated to represent limited reserve support from the neighboring system due to wind power fluctuation. The lower model evaluates the system on the reserve schedule from the reliability point of view. In the lower model, the reliability evaluation of composite power system is performed by using Monte Carlo simulation in a multi-area system. Wind power prediction errors and tieline constraints are incorporated. The reserve requirements in the upper model are iteratively adjusted by the resulting reliability indices from the lower model. Thus, the reserve allocation is gradually optimized until the system achieves the balance between reliability and economy. A modified two-area reliability test system (RTS) is analyzed to demonstrate the validity of the method.This work was supported by National Natural Science Foundation of China (No. 51277141) and National High Technology Research and Development Program of China (863 Program) (No. 2011AA05A103)

    Optimal Home Energy Management System for Committed Power Exchange Considering Renewable Generations

    Get PDF
    This thesis addresses the complexity of SH operation and local renewable resources optimum sizing. The effect of different criteria and components of SH on the size of renewable resources and cost of electricity is investigated. Operation of SH with the optimum size of renewable resources is evaluated to study SH annual cost. The effectiveness of SH with committed exchange power functionality is studied for minimizing cost while responding to DR programs

    Particle swarm optimization with Monte-Carlo simulation and hypothesis testing for network reliability problem

    Get PDF
    The performance of Monte-Carlo Simulation(MCS) is highly related to the number of simulation. This paper introduces a hypothesis testing technique and incorporated into a Particle Swarm Optimization(PSO) based Monte-Carlo Simulation(MCS) algorithm to solve the complex network reliability problem. The function of hypothesis testing technique is to reduce the dispensable simulation in network system reliability estimation. The proposed technique contains three components: hypothesis testing, network reliability calculation and PSO algorithm for finding solutions. The function of hypothesis testing is to abandon unpromising solutions; we use Monte-Carlo simulation to obtain network reliability; since the network reliability problem is NP-hard, PSO algorithm is applied. Since the execution time can be better decreased with the decrease of Confidence level of hypothesis testing in a range, but the solution becomes worse when the confidence level exceed a critical value, the experiment are carried out on different confidence levels for finding the critical value. The experimental results show that the proposed method can reduce the computational cost without any loss of its performance under a certain confidence level

    Optimization for Integration of Plug-in Hybrid Electric Vehicles into Distribution Grid

    Get PDF
    Plug-in hybrid electric vehicles (PHEVs) feature combined electric and gasoline powertrains with internal combustion engine and electric motors powered by battery packs. The battery packs of PHEVs are mostly charged during off-peaks hours at lower prices and meanwhile absorb the excess power from the grid. Similarly, the power stored in the batteries can also flow back to the electric grid in response to ease the peak load demands. With the increasing penetration and integration of PHEVs, the reliability of PHEVs is essential to overall power system reliability since the charging mechanisms of PHEVs can influence the reliability of power system. Furthermore, due to the direct integration of PHEVs into the residential distribution network, the PHEVs can work as backup batteries for power systems in case of power outage. Therefore, the reliability analysis of power systems and the ancillary services provided by PHEVs are also proposed in this thesis study. For the driving pattern of each PHEV, there are three basic elements modeled, which are the departure time, the arrival time and the daily mileage, all represented by probability density functions. Based on these basic concepts, the methodology for modeling the load demand of PHEVs is introduced. In the proposed system, both the Differential Evolution and the Particle Swarm Optimization are proposed to optimize the control strategies for power systems with integration of PHEVs. Aside from using the minimum cost as a figure of merit when designing and determining the best PHEV charging mechanism, the reliability improvement brought to the power systems by PHEVs and the extra earnings obtained by performing frequency regulation services are also quantified and taken into account. Although the reliability of power systems with PHEV penetrations has been well-studied, the adoption of the Differential Evolution algorithm for minimizing the cost of overall system is not exercised, not to mention a thorough comparative study with other common optimization algorithms. To sum up, the Differential Evolution can not only achieve multiple goals by improving the power quality, reducing the peak load, providing regulation services and minimizing the total virtual cost in this system, it can also offer better results compared with the Particle Swarm Optimization in terms of minimizing the cost

    Robust modeling and planning of radio-frequency identification network in logistics under uncertainties

    Get PDF
    To realize higher coverage rate, lower reading interference, and cost efficiency of radio-frequency identification networkin logistics under uncertainties, a novel robust radio-frequency identification network planning model is built and arobust particle swarm optimization is proposed. In radio-frequency identification network planning model, coverage isestablished by referring the probabilistic sensing model of sensor with uncertain sensing range; reading interference iscalculated by concentric map–based Monte Carlo method; cost efficiency is described with the quantity of readers. Inrobust particle swarm optimization, a sampling method, the sampling size of which varies with iterations, is put forwardto improve the robustness of robust particle swarm optimization within limited sampling size. In particular, the exploita-tion speed in the prophase of robust particle swarm optimization is quickened by smaller expected sampling size; theexploitation precision in the anaphase of robust particle swarm optimization is ensured by larger expected sampling size.Simulation results show that, compared with the other three methods, the planning solution obtained by this work ismore conducive to enhance the coverage rate and reduce interference and cost.info:eu-repo/semantics/publishedVersio
    • …
    corecore