214 research outputs found

    Crop leaf disease detection and classification using machine learning and deep learning algorithms by visual symptoms: a review

    Get PDF
    A Quick and precise crop leaf disease detection is important to increasing agricultural yield in a sustainable manner. We present a comprehensive overview of recent research in the field of crop leaf disease prediction using image processing (IP), machine learning (ML) and deep learning (DL) techniques in this paper. Using these techniques, crop leaf disease prediction made it possible to get notable accuracies. This article presents a survey of research papers that presented the various methodologies, analyzes them in terms of the dataset, number of images, number of classes, algorithms used, convolutional neural networks (CNN) models employed, and overall performance achieved. Then, suggestions are prepared on the most appropriate algorithms to deploy in standard, mobile/embedded systems, Drones, Robots and unmanned aerial vehicles (UAV). We discussed the performance measures used and listed some of the limitations and future works that requires to be focus on, to extend real time automated crop leaf disease detection system

    Reliable and Automatic Recognition of Leaf Disease Detection using Optimal Monarch Ant Lion Recurrent Learning

    Get PDF
    Around 7.5 billion people worldwide depend on agriculture production for their livelihood, making it an essential component in keeping life alive on the planet. Negative impacts are being caused on the agroecosystem due to the rapid increase in the use of chemicals to combat plant diseases. These chemicals include fungicides, bactericides, and insecticides. Both the quantity and quality of the output are impacted when there is a high-scale prevalence of diseases in crops. Plant diseases provide a significant obstacle for the agricultural industry, which has a negative impact on the growth of plants and the output of crops. The problem of early detection and diagnosis of diseases can be solved for the benefit of the farming community by employing a method that is both quick and reliable regularly. This article proposes a model for the detection and diagnosis of leaf infection called the Automatic Optimal Monarch AntLion Recurrent Learning (MALRL) model, which attains a greater authenticity. The design of a hybrid version of the Monarch Butter Fly optimization algorithm and the AntLion Optimization Algorithm is incorporated into the MALRL technique that has been proposed. In the leaf image, it is used to determine acceptable aspects of impacted regions. After that, the optimal characteristics are used to aid the Long Short Term Neural Network (LSTM) classifier to speed up the process of lung disease categorization. The experiment's findings are analyzed and compared to those of ANN, CNN, and DNN. The proposed method was successful in achieving a high level of accuracy when detecting leaf disease for images of healthy leaves in comparison to other conventional methods

    Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields

    Get PDF
    Producción CientíficaSite-specific weed management and selective application of herbicides as eco-friendly techniques are still challenging tasks to perform, especially for densely cultivated crops, such as rice. This study is aimed at developing a stereo vision system for distinguishing between rice plants and weeds and further discriminating two types of weeds in a rice field by using artificial neural networks (ANNs) and two metaheuristic algorithms. For this purpose, stereo videos were recorded across the rice field and different channels were extracted and decomposed into the constituent frames. Next, upon pre-processing and segmentation of the frames, green plants were extracted out of the background. For accurate discrimination of the rice and weeds, a total of 302 color, shape, and texture features were identified. Two metaheuristic algorithms, namely particle swarm optimization (PSO) and the bee algorithm (BA), were used to optimize the neural network for selecting the most effective features and classifying different types of weeds, respectively. Comparing the proposed classification method with the K-nearest neighbors (KNN) classifier, it was found that the proposed ANN-BA classifier reached accuracies of 88.74% and 87.96% for right and left channels, respectively, over the test set. Taking into account either the arithmetic or the geometric means as the basis, the accuracies were increased up to 92.02% and 90.7%, respectively, over the test set. On the other hand, the KNN suffered from more cases of misclassification, as compared to the proposed ANN-BA classifier, generating an overall accuracy of 76.62% and 85.59% for the classification of the right and left channel data, respectively, and 85.84% and 84.07% for the arithmetic and geometric mean values, respectively

    A Hybrid Machine Learning Model to Recognize and Detect Plant Diseases in Early Stages

    Get PDF
    This paper presents an improved Inception module to recognise and detect plant illnesses substituting the original convolutions with architecture based on modified-Xception (m-Xception). In addition, ResNet extracts features by prioritising logarithm calculations over softmax calculations to get more consistent classification outcomes. The model’s training utilised a two-stage transfer learning process to produce an effective model. The results of the experiments reveal that the suggested approach is capable of achieving the specified level of performance, with an average recognition fineness of 99.73 on the public dataset and 98.05 on the domestic dataset, respectively

    Classification Models for Plant Diseases Diagnosis: A Review

    Get PDF
    Plants are important source of our life. Crop production in a good figure and good quality is important to us. The diagnosis of a disease in a plant can be manual or automatic. But manual detection of disease in a plant is not always correct as sometimes it can be not be seen by naked eyes so an automatic method of detection of plant diseases should be there. It can make use of various artificial intelligence based or machine learning based methods. It is a tedious task as it needs to be identified in earlier stage so that it will not affect the entire crop. Disease affects all species of plant, both cultivated and wild. Plant disease occurrence and infection severity vary seasonally, regarding the environmental circumstances, the kinds of crops cultivated, and the existence of the pathogen. This review attempts to provide an exhaustive review of various plant diseases and its types, various methods to diagnose plant diseases and various classification models used so as to help researchers to identify the areas of scope where plant pathology can be improved

    Apple Leaf Disease Classification Using Image Dataset: a Multilayer Convolutional Neural Network Approach

    Get PDF
    Agriculture is one of the prime sources of economic growth in Russia; the global apple production in 2019 was 87 million tons. Apple leaf diseases are the main reason for annual decreases in apple production, which creates huge economic losses. Automated methods for detecting apple leaf diseases are beneficial in reducing the laborious work of monitoring apple gardens and early detection of disease symptoms. This article proposes a multilayer convolutional neural network (MCNN), which is able to classify apple leaves into one of the following categories: apple scab, black rot, and apple cedar rust diseases using a newly created dataset. In this method, we used affine transformation and perspective transformation techniques to increase the size of the dataset. After that, OpenCV crop and histogram equalization method-based preprocessing operations were used to improve the proposed image dataset. The experimental results show that the system achieves 98.40% training accuracy and 98.47% validation accuracy on the proposed image dataset with a smaller number of training parameters. The results envisage a higher classification accuracy of the proposed MCNN model when compared with the other well-known state-of-the-art approaches. This proposed model can be used to detect and classify other types of apple diseases from different image datasets

    Plant Leaf Disease Detection Using Efficient Image Processing and Machine Learning Algorithms

    Get PDF
    India is often described as a country of villages, where a majority of the population depends on agriculture for their livelihood. The landscape of Indian agriculture is approximately 159.7 million hectares. Agriculture plays a pivotal role in India's Gross Domestic Product (GDP), accounting for about 18% of the nation's economic output. Diseases and pests can have detrimental effects on crops, leading to reduced yields. These challenges can include the spread of plant diseases, infestations by insects or other pests, and the overall degradation of crop health. Early detection of diseases in crops is crucial for several reasons. Detecting diseases at an early stage allows for prompt intervention, such as applying appropriate pesticides or taking preventive measures. The main aim of this study is to develop a highly effective method for plant leaf disease detection using computer vision techniques. Here, leaf disease detection comprises histogram equalization, denoising, image color threshold masking, feature descriptors such as Haralick textures, Hu moments, and color histograms to extract the salient features of leaf images. These features are then used to classify the images by training Logistic Regression, Linear Discriminant Analysis, K-nearest neighbor, decision tree, Random Forest, and Support Vector Machine algorithms using K-fold validation. K-fold validation is used to separate the validation samples from the training samples, and the K indicates the number of times this is repeated for the generalization. The training and validation processes are performed in two approaches. The first approach uses default hyperparameters with segmented and non-segmented images. In the second approach, all hyperparameters of the models are optimized to train segmented datasets. The classification accuracy improved by 2.19% by utilizing segmentation and hyperparameter tuning further improved by 0.48%. The highest average classification accuracy of 97.92% is achieved using the Random Forest classifier to classify 40 classes of 10 different plant species. Accurate detection of plant disease leads to the sustained growth of plants throughout the growing span of the plants

    A novel computer vision based neutrosophic approach for leaf disease identification and classification

    Get PDF
    The natural products are inexpensive, non-toxic, and have fewer side effects. Thus, their demand especially herbs based medical products, health products, nutritional supplements, cosmetics etc. are increasing. The quality of leafs defines the degree of excellence or a state of being free from defects, deficits, and substantial variations. Also, the diseases in leafs possess threats to the economic, and production status in the agricultural industry worldwide

    Convolutional neural network in rice disease recognition: accuracy, speed and lightweight

    Get PDF
    There are many rice diseases, which have very serious negative effects on rice growth and final yield. It is very important to identify the categories of rice diseases and control them. In the past, the identification of rice disease types was completely dependent on manual work, which required a high level of human experience. But the method often could not achieve the desired effect, and was difficult to popularize on a large scale. Convolutional neural networks are good at extracting localized features from input data, converting low-level shape and texture features into high-level semantic features. Models trained by convolutional neural network technology based on existing data can extract common features of data and make the framework have generalization ability. Applying ensemble learning or transfer learning techniques to convolutional neural network can further improve the performance of the model. In recent years, convolutional neural network technology has been applied to the automatic recognition of rice diseases, which reduces the manpower burden and ensures the accuracy of recognition. In this paper, the applications of convolutional neural network technology in rice disease recognition are summarized, and the fruitful achievements in rice disease recognition accuracy, speed, and mobile device deployment are described. This paper also elaborates on the lightweighting of convolutional neural networks for real-time applications as well as mobile deployments, and the various improvements in the dataset and model structure to enhance the model recognition performance
    • …
    corecore