30,424 research outputs found

    A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements

    Get PDF
    Multipath propagation causes major impairments to Global Positioning System (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this work, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

    Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering

    Get PDF
    Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a mathematical model for sandwichtype lateral flow immunoassay is developed via short available time series. A nonlinear dynamic stochastic model is considered that consists of the biochemical reaction system equations and the observation equation. After specifying the model structure, we apply the extend Kalman filter (EKF) algorithm for identifying both the states and parameters of the nonlinear state-space model. It is shown that the EKF algorithm can accurately identify the parameters and also predict the system states in the nonlinear dynamic stochastic model through an iterative procedure by using a small number of observations. The identified mathematical model provides a powerful tool for testing the system hypotheses and also inspecting the effects from various design parameters in a both rapid and inexpensive way. Furthermore, by means of the established model, the dynamic changes of the concentration of antigens and antibodies can be predicted, thereby making it possible for us to analyze, optimize and design the properties of lateral flow immunoassay devices.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of Fujian Province of China under Grants 2009J01280 and 2009J01281

    Consistency checks for particle filters

    Get PDF
    An "inconsistent" particle filter produces - in a statistical sense - larger estimation errors than predicted by the model on which the filter is based. Two test variables are introduced that allow the detection of inconsistent behavior. The statistical properties of the variables are analyzed. Experiments confirm their suitability for inconsistency detection

    Particle-filtering approaches for nonlinear Bayesian decoding of neuronal spike trains

    Full text link
    The number of neurons that can be simultaneously recorded doubles every seven years. This ever increasing number of recorded neurons opens up the possibility to address new questions and extract higher dimensional stimuli from the recordings. Modeling neural spike trains as point processes, this task of extracting dynamical signals from spike trains is commonly set in the context of nonlinear filtering theory. Particle filter methods relying on importance weights are generic algorithms that solve the filtering task numerically, but exhibit a serious drawback when the problem dimensionality is high: they are known to suffer from the 'curse of dimensionality' (COD), i.e. the number of particles required for a certain performance scales exponentially with the observable dimensions. Here, we first briefly review the theory on filtering with point process observations in continuous time. Based on this theory, we investigate both analytically and numerically the reason for the COD of weighted particle filtering approaches: Similarly to particle filtering with continuous-time observations, the COD with point-process observations is due to the decay of effective number of particles, an effect that is stronger when the number of observable dimensions increases. Given the success of unweighted particle filtering approaches in overcoming the COD for continuous- time observations, we introduce an unweighted particle filter for point-process observations, the spike-based Neural Particle Filter (sNPF), and show that it exhibits a similar favorable scaling as the number of dimensions grows. Further, we derive rules for the parameters of the sNPF from a maximum likelihood approach learning. We finally employ a simple decoding task to illustrate the capabilities of the sNPF and to highlight one possible future application of our inference and learning algorithm

    Particle Filter Design Using Importance Sampling for Acoustic Source Localisation and Tracking in Reverberant Environments

    Get PDF
    Sequential Monte Carlo methods have been recently proposed to deal with the problem of acoustic source localisation and tracking using an array of microphones. Previous implementations make use of the basic bootstrap particle filter, whereas a more general approach involves the concept of importance sampling. In this paper, we develop a new particle filter for acoustic source localisation using importance sampling, and compare its tracking ability with that of a bootstrap algorithm proposed previously in the literature. Experimental results obtained with simulated reverberant samples and real audio recordings demonstrate that the new algorithm is more suitable for practical applications due to its reinitialisation capabilities, despite showing a slightly lower average tracking accuracy. A real-time implementation of the algorithm also shows that the proposed particle filter can reliably track a person talking in real reverberant rooms.This paper was performed while Eric A. Lehmann was working with National ICT Australia. National ICT Australia is funded by the Australian Government’s Department of Communications, Information Technology, and the Arts, the Australian Research Council, through Backing Australia’s Ability, and the ICT Centre of Excellence programs
    corecore